

CCSDS Historical Document
This document’s Historical status indicates that it is no longer current. It
has either been replaced by a newer issue or withdrawn because it was
deemed obsolete. Current CCSDS publications are maintained at the
following location:

http://public.ccsds.org/publications/

Report Concerning Space Data System Standards

CCSDS FILE DELIVERY PROTOCOL (CFDP)—

PART 2
IMPLEMENTERS GUIDE

INFORMATIONAL REPORT

CCSDS 720.2-G-3

GREEN BOOK
April 2007

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page i April 2007

AUTHORITY

 Issue: Informational Report, Issue 3

 Date: April 2007

 Location: Washington, DC, USA

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of
technical panel experts from CCSDS Member Agencies. The procedure for review and
authorization of CCSDS Reports is detailed in the Procedures Manual for the Consultative
Committee for Space Data Systems.

This document is published and maintained by:

CCSDS Secretariat
Office of Space Communication (Code M-3)
National Aeronautics and Space Administration
Washington, DC 20546, USA

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page ii April 2007

FOREWORD

This document is a CCSDS Report, which contains background and explanatory material to
support the CCSDS Recommended Standard, CCSDS File Delivery Protocol (reference [1]).

Through the process of normal evolution, it is expected that expansion, deletion, or
modification to this Report may occur. This Report is therefore subject to CCSDS document
management and change control procedures, which are defined in reference [2]. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this report should be addressed to the CCSDS
Secretariat at the address on page i.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page iii April 2007

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Federal Space Agency (Roskosmos)/Russian Federation.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency (JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Belgian Federal Science Policy Office (BFSPO)/Belgium.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– Korea Aerospace Research Institute (KARI)/Korea.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Ministry of Communications (MOC)/Israel.
– National Institute of Information and Communications Technology (NICT)/Japan.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Organization (NSPO)/Taipei.
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page iv April 2007

DOCUMENT CONTROL

Document Title Date Status

CCSDS
720.2-G-1

CCSDS File Delivery
Protocol (CFDP)—Part 2:
Implementers Guide

January
2002

Original issue, superseded

CCSDS
720.2-G-2

CCSDS File Delivery
Protocol (CFDP)—Part 2:
Implementers Guide

September
2003

Issue 2, superseded

CCSDS
720.2-G-3

CCSDS File Delivery
Protocol (CFDP)—Part 2:
Implementers Guide,
Informational Report,
Issue 3

April 2007 Current issue

EC 1 Editorial Change 1 September
2018

Replaces incorrect figure

September 2018

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page v April 2007

CONTENTS

Section Page

1 INTRODUCTION .. 1-1

1.1 PURPOSE ... 1-1
1.2 SCOPE .. 1-1
1.3 ORGANIZATION OF THIS REPORT .. 1-1
1.4 CONVENTIONS AND DEFINITIONS... 1-1
1.5 REFERENCES ... 1-4

2 CFDP PROTOCOL DATA UNITS ... 2-1

2.1 OVERVIEW ... 2-1
2.2 FIXED PDU HEADER .. 2-5
2.3 OPERATION PDUs ... 2-6
2.4 MONITOR AND CONTROL PDUs .. 2-8
2.5 TERMINATION PDUs .. 2-8

3 USER OPERATIONS MESSAGE FORMATS .. 3-1

3.1 USER OPERATIONS .. 3-1
3.2 PROXY OPERATIONS ... 3-3
3.3 DIRECTORY OPERATIONS .. 3-6
3.4 REMOTE STATUS REPORT OPERATIONS .. 3-7
3.5 REMOTE SUSPEND OPERATIONS ... 3-8
3.6 REMOTE RESUME OPERATIONS ... 3-9
3.7 STORE-AND-FORWARD OVERLAY (SFO) ... 3-10

4 PROTOCOL OPTIONS, TIMERS, AND COUNTERS .. 4-1

4.1 OVERVIEW ... 4-1
4.2 OPTIONS .. 4-1
4.3 TIMERS .. 4-3
4.4 COUNTERS ... 4-4

5 CFDP STATE TABLES .. 5-1

5.1 OVERVIEW ... 5-1
5.2 STATE TABLES .. 5-2
5.3 STATE TABLE NOTES .. 5-9
5.4 KERNEL ... 5-10
5.5 EVENTS ... 5-11

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page vi April 2007

CONTENTS (continued)

Section Page

5.6 ACTIONS ... 5-13
5.7 INTERNAL VARIABLES ... 5-16

6 AN SDL/GRAPHICAL REPRESENTATION OF CFDP STATE DIAGRAMS 6-1

6.1 PURPOSE AND SCOPE .. 6-1
6.2 STATE DIAGRAM TERMINOLOGY .. 6-1
6.3 GRAPHICAL SYMBOL CONVENTION ... 6-2

7 IMPLEMENTATION CONSIDERATIONS .. 7-1

7.1 OVERVIEW ... 7-1
7.2 IMPLEMENTATION NOTES ... 7-1
7.3 TRANSFERRING SUPPORTING INFORMATION .. 7-2
7.4 EXAMPLE FILE CHECKSUM CALCULATION .. 7-2
7.5 JPL NOTES ON CFDP IMPLEMENTATION .. 7-4
7.6 SIMPLE ANALYSIS OF NAK RETRANSMISSION .. 7-10

8 IMPLEMENTATION REPORTS ... 8-1

8.1 OVERVIEW ... 8-1
8.2 BNSC/QINETIQ IMPLEMENTATION REPORT .. 8-1
8.3 ESA/ESTEC IMPLEMENTATION REPORT .. 8-10
8.4 JHU/APL IMPLEMENTATION REPORT ... 8-33
8.5 NASA/GSFC IMPLEMENTATION REPORT ... 8-40
8.6 NASDA CFDP IMPLEMENTATION REPORT ... 8-43

9 REQUIREMENTS ... 9-1

9.1 GENERAL .. 9-1
9.2 CONFIGURATION SCENARIOS .. 9-1
9.3 PROTOCOL REQUIREMENTS ... 9-8
9.4 IMPLEMENTATION REQUIREMENTS ... 9-13

ANNEX A ACRONYMS AND ABBREVIATIONS .. A-1

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page vii April 2007

CONTENTS (continued)

Figure Page

1-1 Bit Numbering Convention ... 1-2
1-2 Octet Convention .. 1-2
2-1 Operations View ... 2-4
6-1 Class 1 Source State Diagram ... 6-3
6-2 Class 1 Destination State Diagram ... 6-4
6-2 Class 2 Source State Diagram ... 6-5
6-4 Class 2 Destination State Diagrams .. 6-7
8-2 Data Flow Between CFDP Entity Components .. 8-2
8-2 Detailed Data Flow for Transaction Task ... 8-4
8-2 Simplified Transaction Task Algorithm ... 8-5
8-2 Detailed Data Flow and Interfaces for Daemon ... 8-7
8-5 Correspondence Between CFDP and OSI Layers .. 8-14
8-6 CFDP Software Functional Diagram .. 8-16
8-5 CFDP Software Elements (Components) Diagram and Packet Flow 8-17
8-8 CFDP/UT Packet Routing .. 8-18
8-5 CFDP Packet Encapsulation ... 8-20
8-10 CFDP Component’s Log Window .. 8-23
8-10 Log Files Name Format .. 8-25
8-12 CFDP Packets Input Flow Diagram and Threads Interaction 8-26
8-13 CFDP Packets Output Flow Diagram ... 8-27
8-14 Enabling Output Buffers with User Software ... 8-30
8-15 NASDA CFDP Implementation History .. 8-43
8-16 The Architecture of NASDA CFDP Implementation ... 8-47
8-17 CFDP Process ... 8-48
8-18 CFDP Service Primitives Message Format .. 8-48
9-1 Scenario 1 ... 9-2
9-2 Scenario 2 ... 9-5
9-3 Scenario 3 ... 9-7

Table

2-1 PDU Type Code .. 2-1
2-2 File Directive Codes ... 2-2
2-3 Condition Codes ... 2-3
2-4 Fixed PDU Header Fields ... 2-5
2-5 Metadata Segmentation Control Field Contents ... 2-6
2-6 Metadata TLV Type Field Codes ... 2-6
2-7 Segment Request Form ... 2-7
2-8 Prompt PDU NAK/Keepalive Field Contents .. 2-8
2-9 Finished PDU Field Codes ... 2-9

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page viii April 2007

CONTENTS (continued)

Table Page

2-10 ACK PDU Contents .. 2-11
3-1 User Operations Message Types .. 3-2
4-1 Options .. 4-1
4-2 Timers ... 4-3
4-3 Counters .. 4-4
5-1 Class 1 Sender ... 5-2
5-2 Class 1 Receiver ... 5-3
5-3 Class 2 Sender (Immediate/Deferred/Asynchronous Nak-mode) 5-4
5-4 Class 2 Receiver (Deferred Nak-mode) .. 5-6
5-5 Title to be Supplied ... 5-10
8-1 MESSENGER Transaction Table ... 8-34
8-2 Scope of NASDA Implementation ... 8-44
9-1 Requirements Related to Communications... 9-9
9-2 Requirements Related to Underlying Layers .. 9-10
9-3 Requirements Related to Protocol Structure ... 9-10
9-4 Requirements Related to Protocol Capabilities .. 9-11
9-5 Requirements Related to Records, Files, and File Management 9-13
9-6 Implementation Requirements .. 9-13

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 1-1 April 2007

1 INTRODUCTION

1.1 PURPOSE

This report is an adjunct document to the Consultative Committee for Space Data Systems
(CCSDS) Recommended Standard for File Delivery Protocol (reference [1]). It contains
material which will be helpful in understanding the primary document, and which will assist
decision makers and implementers in evaluating the applicability of the protocol to mission
needs and in making implementation, option selection, and configuration decisions related to
the protocol.

1.2 SCOPE

This report provides supporting descriptive and tutorial material. This document is not part
of the Recommended Standard. In the event of conflicts between this report and the
Recommended Standard, the Recommended Standard shall prevail.

1.3 ORGANIZATION OF THIS REPORT

This report is divided into two parts. Part 1 (reference [3]) provides an introduction to the
concepts, features, and characteristics of the CCSDS File Delivery Protocol (CFDP). It is
intended for an audience of persons unfamiliar with the CFDP or related protocols. The
second part of this report (this document) is an implementers guide. It provides information
to assist implementers in understanding the details of the protocol and in the selection of
appropriate options, and it contains suggestions and recommendations about implementation-
specific subjects. This document also contains implementation reports from various member
Agencies, reports on testing of the implementations and protocol, and the requirements upon
which the CFDP is based.

1.4 CONVENTIONS AND DEFINITIONS

1.4.1 BIT NUMBERING CONVENTION AND NOMENCLATURE

In this document, the following convention is used to identify each bit in an N-bit field. The
first bit in the field to be transmitted (i.e., the most left-justified when drawing a figure) is
defined to be ‘Bit 0’; the following bit is defined to be ‘Bit 1’, and so on up to ‘Bit N-1’.
When the field is used to express a binary value (such as a counter), the Most Significant Bit
(MSB) shall be the first transmitted bit of the field, i.e., ‘Bit 0’, as shown in figure 1-1.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 1-2 April 2007

N-BIT DATA FIELD

BIT 0 BIT N-1

FIRST BIT TRANSMITTED = MSB

Figure 1-1: Bit Numbering Convention

In accordance with modern data communications practice, spacecraft data fields are often
grouped into 8-bit ‘words’ which conform to the above convention. Throughout this Report,
the nomenclature shown in figure 1-2 is used to describe this grouping.

8-BIT WORD = ‘OCTET’

Figure 1-2: Octet Convention

By CCSDS convention, all ‘spare’ bits shall be permanently set to value ‘zero’.

1.4.2 DEFINITIONS

Within the context of this document the following definitions apply:

A file is a bounded or unbounded named string of octets that resides on a storage medium.

A filestore is a system used to store files; CFDP defines a standard virtual filestore interface
through which CFDP accesses a filestore and its contents.

A CFDP protocol entity (or CFDP entity) is a functioning instance of an implementation of
the CFDP protocol, roughly analogous to an Internet protocol ‘host’. Each CFDP entity has
access to exactly one filestore. (It is recognized that the single [logical] filestore of a CFDP
entity might encompass multiple physical storage partitions, but any specific reference to
such a partition in identifying the location or destination of a file is expected to be encoded
as part of the file’s name [e.g., ‘pathname’].) Each entity also maintains a Management
Information Base (MIB), which contains such information as default values for user
communications requirements (e.g., for address mapping, and for communication timer
settings).

The functional concatenation of a file and related metadata is termed a File Delivery Unit
(FDU); in this context the term ‘metadata’ is used to refer to any data exchanged between

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 1-3 April 2007

CFDP protocol entities in addition to file content, typically either additional application data
(such as a ‘message to user’) or data that aid the recipient entity in effectively utilizing the
file (such as file name).

NOTES

1 An FDU may consist of metadata only.

2 The term ‘file’ is frequently used in this specification as an abbreviation for ‘file
delivery unit’; only when the context clearly indicates that actual files are being
discussed should the term ‘file’ not be read as ‘file delivery unit’. For example, in the
explanation of the record type parameter or the source and destination file name
parameters of the CFDP Service Definition, the term ‘file’ should not be read as ‘file
delivery unit’.

The individual, bounded, self-identifying items of CFDP data transmitted between CFDP
entities are termed CFDP Protocol Data Units (PDUs), or CFDP PDUs. Unless otherwise
noted, in this document the term ‘PDU’ always means ‘CFDP PDU’. CFDP PDUs are of
two general types: File Data PDUs, which convey the contents of the files being delivered,
and File Directive PDUs, which convey only metadata and other non-file information that
advance the operation of the protocol.

A transaction is the end-to-end transmission of a single FDU between two CFDP entities. A
single transaction normally entails the transmission and reception of multiple PDUs. Each
transaction is identified by a unique transaction ID; all elements of any single FDU, both file
content and metadata, are tagged with the same CFDP transaction ID.

Any single end-to-end file transmission task has two associated entities: the source and the
destination. The source is the entity that has the file at the beginning of the task. The
destination is the entity that has a copy of the file when the task is completed.

Each end-to-end file transmission task comprises one or more point-to-point file copy
operations. A file copy operation has two associated entities: the entity that has a copy of
the file at the beginning of the operation (the sender or sending entity) and the entity that has
a copy of the file when the operation is completed (the receiver or receiving entity). In the
simplest case, the only sender of the file is the source and the only receiver is the destination.
In more complex cases (the general case), there are additional waypoint entities that receive
and send copies of the file; the source is the first sender and the destination is the last
receiver.

The term CFDP user refers to the software task that causes the local entity to initiate a
transaction, or the software task that is notified by the local entity of the progress or
completion of a transaction. The CFDP user local to the source entity is referred to as the
source CFDP user. The CFDP user local to the destination entity is referred to as the
destination CFDP user. The CFDP user may be operated by a human or by another software
process. Unless otherwise noted, the term user always refers to the CFDP user.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 1-4 April 2007

A message to user (or user message) allows delivery of information related to a transaction
to the destination user in synchronization with the transaction.

A filestore request is a request to the remote filestore for service (such as creating a
directory, deleting a file, etc.) at the successful completion of a transaction.

Service primitives form the software interface between the CFDP user and its local entity.
The user issues request service primitives to the local entity to request protocol services, and
the local entity issues indication service primitives to the user to notify it of the occurrence
of significant protocol events.

1.5 REFERENCES

The following documents are referenced in the text of this Report. At the time of
publication, the editions indicated were valid. All documents are subject to revision, and
users of this Report are encouraged to investigate the possibility of applying the most recent
editions of the documents indicated below. The CCSDS Secretariat maintains a register of
currently valid CCSDS documents.

[1] CCSDS File Delivery Protocol (CFDP). Recommendation for Space Data System
Standards, CCSDS 727.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, June
2005.

[2] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS
A00.0-Y-9. Yellow Book. Issue 9. Washington, D.C.: CCSDS, November 2003.

[3] CCSDS File Delivery Protocol (CFDP)—Part 1: Introduction and Overview. Report
Concerning Space Data System Standards, CCSDS 720.1-G-3. Green Book. Issue 3.
Washington, D.C.: CCSDS, January 2007.

[4] Specification and Description Language (SDL). ITU Recommendation Z.100. Blue
Book. Volume X.1 – X.5. Geneva, Switzerland: ITU General Secretariat, 1988.

[5] D. Comer and D. Stevens. Internetworking with TCP/IP, Volume II: Design,
Implementation, and Internals. Second edition. Prentice Hall, 1999.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-1 April 2007

2 CFDP PROTOCOL DATA UNITS

2.1 OVERVIEW

This section presents the formats of the CFDP Protocol Data Units (PDU), as well as the
relationships between the PDUs and the CFDP primitives. PDUs are exchanged between
CFDP entities and, therefore, both their contents and their formats are defined. Primitives
are not exchanged between protocol entities and, therefore, their contents are defined but
their formats are not.

The information in this section is provided as an aid to visualizing and understanding the
primitives and PDUs, and their relationships. In all cases more detail, and the protocol
specifications and procedures, are found in reference [1]. As always, reference [1] is the
defining document and in case of any disagreements between it and this Report, reference [1]
is the authoritative document.

All PDUs consist of two components: the Fixed PDU Header and the PDU Data Field.

Two PDU types are defined: File Directive and File Data. The PDU type is signaled in the
PDU Type field of the Fixed PDU Header, as shown in table 2-1 and subsection 2.2.

Table 2-1: PDU Type Code

Field Values
PDU type ‘0’ - File Directive

‘1’ - File Data

The format of the data field of File Data PDUs, which are the PDUs used to deliver the actual
file data, is shown in 2.3.2.

The data field of File Directive PDUs consists of a Directive Code octet followed by a
Directive Parameter field. The File Directive Codes are shown in table 2-2. The formats of
each of the different file directive PDUs are shown in subsections 2.3 through 2.5.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-2 April 2007

Table 2-2: File Directive Codes

Directive Code (hexadecimal) Action

00 Reserved

01 Reserved

02 Reserved

03 Reserved

04 EOF PDU

05 Finished PDU

06 ACK PDU

07 Metadata PDU

08 NAK PDU

09 Prompt PDU

0C Keep Alive PDU

0D–FF Reserved

The relationships between primitives and PDUs are shown in figure 2-1. The figure also
shows the relationships of the primitives and PDUs to the operational process from initiation
through termination. The MIB is shown on the diagram since its (minimum) contents are
defined in the CFDP, and some of those contents are necessary to complete the Metadata
PDU initiated by the Put Request. The format of each of the PDUs is presented in the
remainder of this section.

In several cases, the Directive Parameter field of a File Directive includes a four-bit
Condition Code. The Condition Code shall in each case indicate one of the conditions shown
in table 2-3.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-3 April 2007

Table 2-3: Condition Codes

Condition Code
(binary)

Condition

0000 No error

0001 Positive ACK limit reached

0010 Keep alive limit reached

0011 Invalid transmission mode

0100 Filestore rejection

0101 File checksum failure

0110 File size error

0111 NAK limit reached

1000 Inactivity detected

1001 Invalid file structure

1010 – 1101 (reserved)

1110 Suspend.request received
1111 Cancel.request received

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 2-4

A
pril 2007

PDUs

Monitor and
Control

Indication Primitives

Optional =

Operation

File Data PDU

NAK PDU

Metadata PDU

Transaction.indication

Metadata-receive.indication

EOF PDU Finished PDU

ACK PDU

Cancel.request

Transaction-Finished.indication

Abandoned.indication

EOF-Sent.indication

Termination

File-segment-recv.indication

Suspended.indicationReport.indication

Resumed.indication

Prompt PDU

Prompt
(NAK)

Prompt
(Keep Alive)

Suspend.request

Report.request Resume.request

Keep Alive PDU

Fault.indication

Request
Primitives

Management
Information
Base (MIB)

Put.request

source file
name

segmentation
control

destination
file name

destination
CFDP entity ID

Initiation

Flow Label

Transmission
Mode

Fault Handler
Override

Msg to
User

Remote Put
Order

Remote Segment-
ation Control

Remote Flow
Label

Remote Message
to User

Remote Put
Cancel

Remote Filestore
Request

Remote Fault
Handler Override

Remote Filestore
Response

Remote Put
Finished

Remote
Transmission Mode

Proxy
Operations

Remote Status
Report Response

Remote Status
Report Request

Remote Status
Report Operations

File Store
Requests

remove directory

create file

delete file

rename file

append file

replace file

create directory

deny file

Fault
Handler

Remote Suspend
Response

Remote Suspend
Request

Remote Suspend
Operations

Remote Resume
Response

Remote Resume
Request

Remote Resume
Operations

Directory
Listing Request

Directory
Listing Response

Directory
Operations

Transfer-Consigned.indicationEOF-Rcv.indication

Figure 2-1: Operations View

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-5 April 2007

2.2 FIXED PDU HEADER

V
e
r
s
i
o
n

P
D
U

T
y
p
e

D
i
r
e
c
t
i
o
n

M
o
d
e

T
r
a
n
s
m
i
s
s
i
o
n

C
R
C

F
l
a
g

R
e
s
e
r
v
e
d

PDU Data
Field Length

R
e
s
e
r
v
e
d

e
n
t
i
t
y

I
D
s

l
e
n
g
t
h

o
f

R
e
s
e
r
v
e
d

n
m
b
r

l
n
g
t
h

T
r
a
n
s
.

s
e
q

Source
entity ID

Transaction
Seq. nmbr

Destination
entity ID

3 1 1 111 1 1 3316 var. var.var.

PDU

Data

Field

Table 2-4: Fixed PDU Header Fields

Field Length (bits) Values Comment
Version 3 ‘000’ For the first version.
PDU type 1 ‘0’ — File Directive

‘1’ — File Data

Direction 1 ‘0’ — toward file receiver
‘1’ — toward file sender

Used to perform PDU forwarding.

Transmission Mode 1 ‘0’ — acknowledged
‘1’ — unacknowledged

CRC Flag 1 ‘0’ — CRC not present
‘1’ — CRC present

Reserved for future use 1 set to ‘0’
PDU Data field length 16 In octets.
Reserved for future use 1 set to ‘0’
Length of entity IDs 3 Number of octets in entity ID less one;

i.e., ‘0’ means that entity ID is one
octet. Applies to all entity IDs in the
PDU header.

Reserved for future use 1 set to ‘0’
Length of Transaction
sequence number

 3 Number of octets in sequence number
less one; i.e., ‘0’ means that sequence
number is one octet.

Source entity ID variable Uniquely identifies the entity that
originated the transaction.

Transaction sequence number variable Uniquely identifies the transaction,
among all transactions originated by
this entity.

Destination entity ID variable Uniquely identifies the entity that is the
final destination of the transaction’s
metadata and file data.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-6 April 2007

2.3 OPERATION PDUs

2.3.1 METADATA PDU

Length

*

8
8X

Length

(Value)

Destination File
Name

8X
Length

Length

(zero if no
Parameter)

(Value)

8

Type

8

(See Table
below)

(See Table
below)

1 7
t
i
o
n

C
o
n
t
r

S
e
g
m
e
n
t
a
-

Reserved

32

File Size (in octets)
Set to all zeroes for
a file of unbounded size

8

File Directive
Code

07 Hex
Fixed PDU

Header

8X
Length

Length

*

(Value)

8

Source File Name

* LV Length field indicates zero length and LV value field omitted when
there is no associated file, e.g. messages used for Proxy operations

Table 2-5: Metadata Segmentation Control Field Contents

Segmentation Control

‘0’ - Record boundaries
respected

‘1’ - Record boundaries not
respected

Table 2-6: Metadata Type-Length-Value (TLV) Field Codes

Type Field Code Contents of Value Field
00 Hex Filestore Request
02 Hex Message to User
04 Hex Fault Handler Overrides
05 Hex Flow Label

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-7 April 2007

2.3.2 FILE DATA PDU

Fixed PDU
Header

Segment Offset
(in octets)

00000000-FFFFFFFF Hex

32 Variable

File Data

2.3.3 NEGATIVE ACKNOWLEDGMENT (NAK) PDU

64 X 'N'8

File Directive
Code

08 Hex
Fixed PDU

Header

‘N’ Segment
Requests

Start Offset
in Octets

(32)

End Offset
in Octets

(32)

Start of Scope End of scope

32 32

Table 2-7: Segment Request Form

Parameter Length (bits) Values Comments

Start offset 32 Data — Offset of start of requested
segment

Metadata — 00000000 (hex)

In octets

End Offset 32 Data — Offset of first octet after end
of requested segment

Metadata — 00000000 (hex)

In octets

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-8 April 2007

2.4 MONITOR AND CONTROL PDUs

2.4.1 PROMPT PDU

N
A
K
/
K
e
e
p
A
l
i
v
e

Spare

1 78

File Directive
Code

09 Hex
Fixed PDU

Header

Table 2-8: Prompt PDU NAK/Keep Alive Field Contents

NAK/Keep Alive Code

‘0’ - NAK

‘1’ - Keep Alive

2.4.2 KEEP ALIVE PDU

8

File Directive
Code

0C Hex
Fixed PDU

Header

Progress
(in octets)

00000000-FFFFFFFF Hex

32

2.5 TERMINATION PDUs

2.5.1 END OF FILE (EOF) PDU
4 4 3232

spare file size in octetesFile Checksum

8

File Directive
Code

04 Hex

Fixed PDU
Header

Condition
Code

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-9 April 2007

NOTES

1 File Checksum: Modulo 232 word-wide addition (where ‘word’ is defined as 4 octets)
of all file segment data transmitted by the sender (regardless of the condition code,
i.e., even if the condition code is other than ‘No error’), aligned with reference to the
start of file.

2 File Size: Expressed in octets. This value shall be the total number of file data octets
transmitted by the sender, regardless of the condition code (i.e., it shall be supplied
even if the condition code is other than ‘No error’).

3 Unacknowledged-mode transactions always terminate on receipt of the EOF (No
error) PDU; therefore, any Metadata or file data PDU received after the EOF (No
error) PDU for the same transaction may be ignored.

2.5.2 FINISHED PDU

14 1
8X

Length

S
t
a
t
u
s

E
n
d

S
y
s
t
e
m

C
o
d
e

D
e
l
i
v
e
r
y

File
Status

2

Type Length (Value)

8 8

More Filestore
Responses as
required

Filestore Response*

8

File Directive
Code

05 Hex
Fixed PDU

Header
01 Hex

Condition
Code

*A filestore response TLV must be included for
each filestore request TLV of the Metadata PDU

Table 2-9: Finished PDU Field Codes

Parameter Values Comment

End System
Status

‘0’ - Generated by Waypoint

‘1’ - Generated by End
System

Delivery Code ‘0’ - Data Complete

‘1’ - Data Incomplete

File Status
Codes

‘00’ — Delivered file discarded
deliberately

‘01’ — Delivered file discarded
due to filestore rejection

‘10’ — Delivered file retained in
filestore successfully

‘11’ — Delivered file status
unreported

File status is meaningful only when the
transaction includes the transmission of file
data.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-10 April 2007

2.5.3 POSITIVE ACKNOWLEDGMENT (ACK) PDU

Spare

4 48

File Directive
Code

06 Hex
Fixed PDU

Header

Directive
Code

Directive
Subtype

Code

Condition
Code

Transaction
Status

4 2 2

NOTE – Transaction Status parameter:

00 – Undefined: The transaction to which the acknowledged PDU belongs is not
currently active at this entity, and the CFDP implementation does not retain
transaction history. The transaction might be one that was formerly active and
has been terminated, or it might be one that has never been active at this entity.

01 – Active: The transaction to which the acknowledged PDU belongs is
currently active at this entity.

10 – Terminated: The transaction to which the acknowledged PDU belongs is
not currently active at this entity; the CFDP implementation does retain
transaction history, and the transaction is thereby known to be one that was
formerly active and has been terminated.

11 – Unrecognized: The transaction to which the acknowledged PDU belongs is
not currently active at this entity; the CFDP implementation does retain
transaction history, and the transaction is thereby known to be one that has never
been active at this entity.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 2-11 April 2007

Table 2-10: ACK PDU Contents

Parameter Length (bits) Values Comments

Directive code 4 See table 2-2. Only EOF and
Finished PDUs are
acknowledged.

Directive code of
the acknowledged
PDU.

Directive subtype
code

4 Values depend on
directive code.
For ACK of
Finished PDU:
binary 0000 if
generated by
waypoint, binary
0001 if generated
by end system.
Binary 0000 for
ACKs of all other
file directives.

Condition code 4 See table 2-3. Condition code of
the acknowledged
PDU.

Spare 2

Transaction status 2 Status of the
transaction in the
context of the
entity that is
issuing the
acknowledgment.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-1 April 2007

3 USER OPERATIONS MESSAGE FORMATS

3.1 USER OPERATIONS

3.1.1 METADATA PDU

User Operations Messages are contained in a metadata PDU, as pictured below:

1 7

t
i
o
n

C
o
n
t
r

S
e
g
m
e
n
t
a
-

Reserved

32

File Size (in octets)
All zeroes

8

File Directive
Code

07 Hex
Fixed PDU

Header

Length*

0

8

* LV value
field
omitted for
Proxy
operations

8

Length*

0
* LV value
field
omitted for
Proxy
operations

3.1.2 RESERVED CFDP MESSAGE

Each individual User Operations Message in the metadata PDU is preceded by the Reserved
Message Header field, pictured below. User Operations Message types are contained in
table 3-1.

Length

8

cfdp
(in ASCII)

8

Msg
Type

02 Hex

(Value)
8X Length

832

Msg
Type

User

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-2 April 2007

Table 3-1: User Operations Message Types

Msg Type
(hex)

Interpretation

00 Proxy Put Request

01 Proxy Message to User

02 Proxy Filestore Request

03 Proxy Fault Handler Override

04 Proxy Transmission Mode

05 Proxy Flow Label

06 Proxy Segmentation Control

07 Proxy Put Response

08 Proxy Filestore Response

09 Proxy Put Cancel

10 Directory Listing Request
11 Directory Listing Response
20 Remote Status Report Request
21 Remote Status Report Response
30 Remote Suspend Request
31 Remote Suspend Response
38 Remote Resume Request
39 Remote Resume Response

3.1.3 ORIGINATING TRANSACTION ID MESSAGE

The Originating Transaction ID message is common to all categories of User Operations
messages, and its format, below, is the same when used in any of the categories.

8

Msg
Type

0A Hex

1 3

R
e
s
e
r
v
e
d

L
e
n
g
t
h

e
n
t
i
t
y

I
D

‘0’

1 3

R
e
s
e
r
v
e
d

L
e
n
g
t
h

S
e
q
.
N
u
m

T
r
a
n
s
a
c
t
i
o
n‘0’

Variable Variable

Source entity ID Transaction
sequence
number

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-3 April 2007

3.2 PROXY OPERATIONS

3.2.1 PROXY PUT REQUEST

Length

8
8X

Length

(Value)

Destination
entity

ID

8

Msg
Type

00 Hex

Length*

8
8X

Length

(Value)

Source
file

name

Length*

8
8X

Length

(Value)

Destination
file

name

* Length is zero if parameter is omitted

3.2.2 PROXY MESSAGE TO USER

Length

8
8X

Length

(Value)

8

Msg
Type

01 Hex

3.2.3 PROXY FILESTORE REQUEST

Length

8
8X

Length

(Value)

(A single
CFDP

File Store
Request)

8

Msg
Type

02 Hex

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-4 April 2007

3.2.4 PROXY FAULT HANDLER OVERRIDE
8

Msg
Type

03 Hex

8

Fault
Handler

Code

3.2.5 PROXY TRANSMISSION MODE
8

Msg
Type

04 Hex

7 1

m
o
d
e

T
r
a
n
s
m
s
n

Spare

3.2.6 PROXY FLOW LABEL

Length

8
8X

Length

(Value)

(format not
defined)

8

Msg
Type

05 Hex

3.2.7 PROXY SEGMENTATION CONTROL
8

Msg
Type

06 Hex

7 1

C
o
n
t
r
o
l

S
e
g
m
e
n
t
a
t
n

Spare

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-5 April 2007

3.2.8 PROXY PUT RESPONSE

8

Msg
Type

07 Hex

11

S
p
a
r
e

Deliv-
ery

Code

File
Status

2

Con-
dition
Code

4

3.2.9 PROXY FILESTORE RESPONSE

8 8
8X

Length

Msg
Type

08 Hex

Length (Value)

(A single
CFDP File

Store
Response)

3.2.10 PROXY PUT CANCEL

8

Msg
Type

09 Hex

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-6 April 2007

3.3 DIRECTORY OPERATIONS

3.3.1 DIRECTORY LISTING REQUEST

Length

8
8X

Length

(Value)

Directory
Name

8

Msg
Type

10 Hex

Length

8
8X

Length

(Value)

Directory
File

Name*

* The file name and path at the filestore local to
the requesting CFDP user in which the responding
CFDP user should put the directory listing

3.3.2 DIRECTORY LISTING RESPONSE

Length

8
8X

Length

(Value)

Directory
Name*

8

Msg
Type

11 Hex

Length

8
8X

Length

(Value)

Directory
File Name**

Listing
Response

Code
00-7F-

Successful
80-FF-

Unsuccess-
ful

8

*The name of the directory
being listed, taken from the
directory listing request

**The file name and path at the
filestore local to the requesting
CFDP in which the listing has
been put, taken from the
directory listing request

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-7 April 2007

3.4 REMOTE STATUS REPORT OPERATIONS

3.4.1 REMOTE STATUS REPORT REQUEST

Length

8
8X

Length

(Value)

8

Msg
Type

20 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

Report File
Name

3.4.2 REMOTE STATUS REPORT RESPONSE

8

Msg
Type

21 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable2 6

S
t
a
t
u
s

T
r
n
s
a
c
t
i
o
n

R
e
s
e
r
v
e
d

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-8 April 2007

3.5 REMOTE SUSPEND OPERATIONS

3.5.1 REMOTE SUSPEND REQUEST

8

Msg
Type

30 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

3.5.2 REMOTE SUSPEND RESPONSE

8

Msg
Type

31 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable2 5

S
t
a
t
u
s

T
r
n
s
a
c
t
i
o
n

R
e
s
e
r
v
e
d

1

S
u
s
p

I
n
d

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-9 April 2007

3.6 REMOTE RESUME OPERATIONS

3.6.1 REMOTE RESUME REQUEST

8

Msg
Type

38 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

3.6.2 REMOTE RESUME RESPONSE

8

Msg
Type

39 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable2 5

S
t
a
t
u
s

T
r
n
s
a
c
t
i
o
n

R
e
s
e
r
v
e
d

1

S
u
s
p

I
n
d

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-10 April 2007

3.7 STORE-AND-FORWARD OVERLAY (SFO)

3.7.1 SFO REQUEST

8

Msg
Type

40 Hex

1 8

Source
Entity ID

SFO Request
Label

variable variable2 41
T
r
a
c
e

C
o
n
t
r
.

F
l
a
g

T
r
n
s
m
s
n

M
o
d
e

S
e
g
m
n
t

C
o
n
t
r
l

R
e
s
e
r
v
e
d

Prior
Waypoints

Count

Destination
Entity ID

Source
File

Name

Destination
File

Name

variable variable variable

3.7.2 SFO MESSAGE TO USER

8

Msg
Type

41 Hex

Msg to
User

variable

More Msgs
to User

as
Needed

variable

3.7.3 SFO FLOW LABEL

8

Msg
Type

42 Hex

Flow Label

variable

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 3-11 April 2007

3.7.4 SFO FAULT HANDLER OVERRIDE
8

Msg
Type

43 Hex

Fault
Hndlr

Override
Msgl

variable

3.7.5 SFO FILESTORE REQUEST
8

Msg
Type

44 Hex

8

Filestore
Request

Msg

8 X Length

Length

3.7.6 SFO REPORT
8

Msg
Type

45 Hex

18

Source
Entity ID

SFO Request
Label

variable variable 24 1

F
i
l
e

S
t
a
t
u
s

D
e
l
i
v
r
y

C
o
d
e

D
i
r
e
c
t
i
o
n

C
o
d
e

C
o
n
d
i
t
i
o
n

Prior
Waypoints

Count

Destination
Entity ID

Reporting
Enitiy ID

Report
Code

variable variable 8

3.7.7 SFO FILESTORE RESPONSE
8

Msg
Type

46 Hex

8

Filestore
Response

8 X Length

Length

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 4-1 April 2007

4 PROTOCOL OPTIONS, TIMERS, AND COUNTERS

4.1 OVERVIEW

This section contains implementation options, timers, and counters.

4.2 OPTIONS

Table 4-1: Options

Put Modes Effect
UnACK Selects Unreliable mode of operation.
NAK Selects Reliable mode of operation.

Put NAK Modes Effect
Immediate NAKs are sent as soon as missing data is detected.
Deferred NAK is sent when EOF is received.
Prompted NAK is sent when a Prompt (NAK) is received.
Asynchronous NAK is sent upon a local (implementation-specific) trigger at

the receiving entity.

PDU CRC Effect
True Requires that a CRC be calculated and inserted into each File

Data PDU.
False No CRC is inserted in File Data PDUs.

Put File Types Effect
Bounded Sends a normal file, i.e., one in which the file is completely

known before transmission.
Unbounded Sends a file the length of which is not known when

transmission is initiated (intended primarily for real-time data).

Segmentation Control
(Record Boundaries
Respected)

Effect

Yes Causes each File Data PDU to begin at a record boundary.
No Ignores record structure when building PDUs.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 4-2 April 2007

Table 4-1: Options (continued)

Put Primitives Effect

EOF-sent.ind Indicates to User at source entity that the EOF for the
identified transaction was sent.

EOF-recv.ind Indicates to User at destination entity that the EOF for the
identified transaction was received (optional).

Transaction-finished.ind Mandatory at source entity, optional at destination entity.

File-segment-receive.ind Indicates to the user at destination entity that a File Data PDU
has been received.

Transfer-
consigned.indication

Indicates to the User at source entity that the identified
transaction has been entrusted to the next entity (waypoint)
(Extended Procedures only).

Action on Detection of a
Fault

Effect

Cancel Cancels subject transaction.
Suspend Suspends subject transaction.
Ignore Ignores error (but sends Fault.indication to local user).
Abandon Abandons transaction with no further action.

Action on Cancel
At Receiving End

Effect

Discard data Discards all data received in the transaction.
Forward incomplete Forwards all data received to the local destination.

Put Report Modes
(Sending End)

Effect

Prompted Rpt Returns report on Prompt from local user.
Periodic Returns report to local user at specified intervals.

Release of
Retransmission Buffers

Effect

Incremental and Immediate Releases local retransmission buffer as soon as sent.
In total when ‘Finished’
Received

Releases local retransmission buffer only when Finished PDU
is received.

Waypoint Forwarding
Method

Effect

Incremental and Immediate Sends received PDUs to next entity as soon as received.
In Total Upon Complete
Custody Acquisition

Sends FDU to next entity only when entire FDU has been
received.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 4-3 April 2007

4.3 TIMERS

The following should be considered relative to the use of timers:

a) At the sender, the timer for a given EOF or Finished PDU should not be started until
the moment that the PDU is delivered to the link layer for transmission. All outbound
queuing delay for the PDU has already been incurred at that point.

b) At the receiver, acknowledgment PDUs should always be inserted at the front of the
priority First-In-First-Out (FIFO) list to ensure that they are transmitted as soon as
possible after reception of the PDUs to which they respond. (Acknowledgment PDUs
are small and are sent infrequently, so the effect on the delivery of any emergency
traffic is insignificant.)

c) To account for any additional delays introduced by loss of connectivity, the
implementer must rely on external link state cues. Whenever loss of connectivity is
signaled by a link state queue, the timers for all PDUs destined for the corresponding
remote entity should be suspended; reacquiring the link to the entity should cause
those timers to be resumed. By using this method, there is no need to try to estimate
connectivity loss delays in advance, and there is no need for CFDP itself to be aware
of either the ephemerides or the tracking schedules of the local entity or of any
remote entity.

Table 4-2: Timers

TIMER
NAME

TYPE

TIMER
LOCATION

STARTS ON

RESETS
ON

TERMINATES
ON

ACTIONS ON
EXPIRY

NAK Retry
Timer

Mandatory for all
acknowledged
modes

FDU
Receiving
entity

Issuance of a
NAK

Issuance
of a NAK

Reception of all
requested data

Issue a new
NAK for all
unreceived
data

ACK Retry
Timer

Mandatory for all
acknowledged
modes

Entity issuing
PDU to be
acknowledged

Issuance of a
PDU requiring
positive
acknowledgment

Re-
issuance
of the
PDU

Reception of
expected
response

Re-issue the
original PDU

Inactivity
Timer
(suspended
by
Suspension
Procedures)

Mandatory
except sending
entity in
unacknowledged
mode

Each Source
and
Destination
entity

Reception of any
PDU

Reception
of any
PDU

Implementation
-specific

Issue an
Inactivity.in-
dication

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 4-4 April 2007

4.4 COUNTERS

Table 4-3: Counters

COUNTER NAME TYPE
COUNTER
LOCATION

COUNTER
LIMIT

ACTION ON
REACHING

LIMIT
NAK Timer Expiration
Limit

Mandatory for all
acknowledged
modes

FDU Receiving
entity

Implementation
-specific

Invoke Fault
procedures

ACK Timer Expiration
Limit

Mandatory for all
acknowledged
modes

Entity issuing PDU
to be acknowledged

Implementation
-specific

Invoke Fault
procedures

Keep Alive Discrepancy
Limit

Optional

Implementation
-specific

Invoke Fault
procedures

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-1 April 2007

5 CFDP STATE TABLES

NOTE – Contributed by Timothy Ray, National Aeronautics and Space Administration
(NASA)/Goddard Space Flight Center (GSFC).

5.1 OVERVIEW

This section provides validated logic for implementing a practical subset of the CFDP
standard. This subset includes Class 1 service (i.e., Unacknowledged Mode) and the
Deferred-Nak subset of Class 2 service (i.e., Acknowledged Mode). Deferred-Nak means
that the Receiver waits for the Sender to transmit the entire file once before responding with
any Naks requesting retransmission of missing data. Proxy operations (e.g., asking a partner
to send a file back) are not covered here.

The core logic is contained in these state tables:

a) Class 1 Sender (S1);

b) Class 1 Receiver (R1);

c) Class 2 Sender (S2);

d) Class 2 Receiver (R2).

For any CFDP transaction that falls within the supported subset, one of the state tables will
apply. For each active transaction, a state machine exists. For example, if a CFDP-entity
has 3 active transactions for which its role is Class 2 Receiver, it will have 3 R2 state
machines, each utilizing the R2 state table logic. Each state machine runs independently of
any others.

The Class 2 Sender state table logic supports Deferred, Immediate, and Asynchronous Nak-
modes—it will work with any Class 2 Receiver. The Class 2 Receiver state table logic
supports only the Deferred Nak-mode. The state tables (tables 5-1 through 5-4) are
contained in subsection 5.2, and are followed by general notes in subsection 5.3.

There is additional logic for routing each incoming PDU or User Request to the appropriate
state machine, creating a new state machine for each new transaction, and maintaining the
list of active state machines. This logic is called the Kernel logic, and is contained in
subsection 5.4. State table logic runs in response to each event that occurs. Events are listed
in subsection 5.5. For each event, the state tables specify a set of actions to be taken. Some
actions are described in more detail in subsection 5.6. Variables used within the state tables
are described in subsection 5.7.

While these state tables are not replacements for the specifications provided in the CFDP
Blue Book, the logic described in this section has been implemented and validated. The
implementation was connected to each of the other existing CFDP implementations, and
Service Classes 1 and 2 were tested. Validation included a variety of test scenarios where
data was purposely dropped, as well as suspend/resume/cancel operations.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-2 April 2007

5.2 STATE TABLES

Table 5-1: Class 1 Sender

Event:

State
S1

Send Metadata
S2

Send File
E0

Entered this state
Initialize Open source file

If (Open failure?)
 Fault (Filestore)
If (Invalid file structure?)
 Fault (File structure)
Trigger E1

E1
Please send file-data

N/A If (Suspended=False and
 Frozen=False)
 If (Comm layer ready?)
 Tx: one File-data
 If (Entire file sent?)
 Tx: EOF (no error)
 Issue Transaction-Finished
 Shutdown
 Trigger E1

E2
Abandon this transaction

N/A Issue Abandoned
Shutdown

E3
Notice of Cancellation

N/A Tx: EOF (cancel)
Issue Transaction-Finished
Shutdown

E4
Notice of Suspension

N/A If (Suspended=False)
 Issue Suspended
 Suspended=True

E30
Rx: Put Request
(This is the first event
received)

Issue Transaction
Tx: Metadata
If (File Transfer?)
 State=S2
Else
 Tx: EOF (no error)
 Issue Transaction-Finished
 Shutdown

N/A

E31
Rx: Suspend Request

N/A Trigger E4

E32
Rx: Resume Request

N/A If (Suspended=True)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E1

E33
Rx: Cancel Request

N/A Condition=‘Cancel.request received’
Trigger E3

E34
Rx: Report Request

N/A Issue report

E40
Rx: Freeze

N/A Frozen=True

E41
Rx: Thaw

N/A If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E1

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-3 April 2007

Table 5-2: Class 1 Receiver

Event:

State
S1

Wait for MD
S2

Wait for EOF
E0

Entered this state
Initialize N/A

E2
Abandon this transaction

Issue Abandoned
Shutdown

Issue Abandoned
Shutdown

E3
Notice of Cancellation

Issue Transaction-Finished
Shutdown

Possibly retain temp file
Issue Transaction-Finished
Shutdown

E4
Notice of Suspension

N/A N/A

E10
Rx: Metadata
(This is normally the
first event received)

Issue Metadata-Recv
If (File Transfer?)
 Open temp file
 If (Open failure?)
 Fault (Filestore)
Process Metadata TLVs
State=S2

N/A

E11
Rx: File-Data

N/A If (File Transfer?)
 Store file-data
 Update Received_file_size

E12
Rx: EOF (no error)

(Optionally, let the User know that the
transaction completed without any
Metadata being received)
Issue Transaction-Finished
Shutdown

If (File Transfer?)
 Close temp file
 If (File size error?)
 Fault (File size)
 If (File checksum failure?)
 Fault (File checksum)
 Delivery=Complete
 Copy temp file to dest file
 If (Copy error?)
 Fault (Filestore)
If (Filestore Requests?)
 Execute Filestore Requests
Issue Transaction-Finished
Shutdown

E13
Rx: EOF (cancel)

Update Condition
Issue Transaction-Finished
Shutdown

Update Condition
Possibly retain temp file
Issue Transaction-Finished
Shutdown

E27
Inactivity-timeout

Start Inactivity-timer
Fault (Inactivity)

Start Inactivity-timer
Fault (Inactivity)

E33
Rx: Cancel Request

Condition=‘Cancel.request received’
Trigger E3

Condition=‘Cancel. request received’
Trigger E3

E34
Rx: Report Request

Issue Report Issue Report

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-4 April 2007

Table 5-3: Class 2 Sender (Immediate/Deferred/Asynchronous Nak-mode)

 State:

Event:

S1
Send Metadata

S2
Send the File Once

S3
Send EOF; Fill Any Gaps

S4
Transaction Cancelled

E0
Entered this state

Initialize Open source file
If (Open failure?)
 Fault (Filestore)
If (Invalid file structure)
 Fault (File structure)
Trigger E1

Tx: EOF
Start Ack-timer
Start Inactivity-timer

Suspended=False
Tx: EOF (cancel)
Start Ack-timer

E1
Please send file-data

N/A If (Suspended=False
 and Frozen=False)
 If (Comm layer ready?)
 Tx: one File-data
 If (Entire file sent?)
 State=S3
 Trigger E1

If (Suspended=False
 and Frozen=False)
 If (File-data queued?)
 If (Comm layer ready?)
 Tx: one File-data
 Trigger E1

N/A

E2
Abandon transaction

N/A Issue Abandoned
Shutdown

Issue Abandoned
Shutdown

Issue Abandoned
Shutdown

E3
Notice of Cancellation

N/A State=S4 State=S4 N/A

E4
Notice of Suspension

N/A If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

E5
Suspend timers

N/A N/A Suspend Inactivity-timer
If (Is Ack-timer running?)
 Suspend Ack-timer

Suspend Inactivity-timer
Suspend Ack-timer

E6
Resume timers

N/A Trigger E1 Resume Inactivity-timer
If (Is Ack-timer suspended?)
 Resume Ack-timer
Trigger E1

Resume Inactivity-timer
Resume Ack-timer

E14
Rx: Ack-EOF

N/A N/A Cancel Ack-timer If (Condition_code<>No_Error)
 Issue Transaction-Finished
 Shutdown

E15
Rx: Nak

N/A If (Suspended=False
 and Frozen=False)
 Queue nakked data

If (Suspended=False
 and Frozen=False)
 Queue nakked data
 Trigger E1

N/A

E16
Rx: Finished (no error)

N/A N/A Tx: Ack-Finished
Issue Transaction-Finished
Shutdown

N/A

E17
Rx: Finished (cancel)

N/A Update Condition
Tx: Ack-Finished
Issue Transaction-Finished
Shutdown

Update Condition
Tx: Ack-Finished
Issue Transaction-Finished
Shutdown

Update Condition
Tx: Ack-Finished
Issue Transaction-Finished
Shutdown

E25
Ack-timeout

N/A N/A Start Ack-timer
If (Positive ack limit
 reached?)
 Fault (Ack limit)
Tx: EOF

Start Ack-timer
If (Positive ack limit reached?)
 Trigger E2
Else
 Tx: EOF

E27
Inactivity Timeout

N/A N/A Start Inactivity-timer
Fault (Inactivity)

Issue Abandoned
Shutdown

E30
Rx: Put Request
(This is the first event
received)

Issue Transaction
Tx: Metadata
If (File transfer?)
 State=S2
Else
 State=S3

N/A N/A N/A

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-5 April 2007

 State:

Event:

S1
Send Metadata

S2
Send the File Once

S3
Send EOF; Fill Any Gaps

S4
Transaction Cancelled

E31
Rx: Suspend Request

N/A Trigger E4 Trigger E4 Trigger E4

E32
Rx: Resume Request

N/A If (Suspended)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

If (Suspended)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

If (Suspended)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

E33
Rx: Cancel Request

N/A Condition=‘Cancel.request
received’
Trigger E3

Condition=‘Cancel.request
received’
Trigger E3

N/A

E34
Rx: Report Request

N/A Issue Report Issue Report Issue Report

E40
Rx: Freeze

N/A If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

E41
Rx: Thaw

N/A If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 5-6

A
pril 2007

Table 5-4: Class 2 Receiver (Deferred Nak-mode)

 State:

Event:

S1
Wait for EOF

S2
Get Missing Data

S3
Send Finished and Confirm

Delivery

S4
Transaction Cancelled

E0
Entered this State

Initialize

If (Suspended=False
 And Frozen=False)
 Tx: Nak
Start Nak-timer

Delivery=Complete
Cancel Nak-timer
If (File transfer?)
 Close temp file
 If (File checksum failure?)
 Fault (File checksum)
 Copy temp file to dest file
 If (Copy error?)
 Fault (Filestore)
If (Filestore Requests?)
 Execute filestore requests
Tx: Finished (no error)
Start Ack-timer

Suspended=False
If (Previous_state<>S3)
 Possibly retain temp file
Tx: Finished (cancel)
Start Ack-timer

E2
Abandon this transaction

Issue Abandoned
Shutdown

Issue Abandoned
Shutdown

Issue Abandoned
Shutdown

Issue Abandoned
Shutdown

E3
Notice of Cancellation

State=S4 State=S4 State=S4 N/A

E4
Notice of Suspension

If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

If (Suspended=False)
 Issue Suspended
 Suspended=True
 If (Frozen=False)
 Trigger E5

E5
Suspend timers

Suspend Inactivity-timer Suspend Inactivity-timer Suspend Inactivity-timer
Suspend Ack-timer

Suspend Inactivity-timer
Suspend Ack-timer

E6
Resume timers

Resume Inactivity-timer Resume Inactivity-timer Resume Inactivity-timer
Resume Ack-timer

Resume Inactivity-timer
Resume Ack-timer

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 5-7

A
pril 2007

 State:

Event:

S1
Wait for EOF

S2
Get Missing Data

S3
Send Finished and Confirm

Delivery

S4
Transaction Cancelled

E10
Rx: Metadata
(This is normally the first event
received)

Reuse Senders first PDU header
If (Metadata_Received = False)
 Metadata_Received=True
 Issue Metadata-Recv
 If (File Transfer?)
 If (File_Open=False)
 Open temp file
 If (Open failure?)
 Fault (Filestore)
 File_Open=True
 Update Nak-list
 Process Metadata TLVs

If (Metadata_Received=False)
 Metadata_Received=True
 Issue Metadata-Recv
 If (File Transfer?)
 If (File_Open=False)
 Open temp file
 If (Open failure?)
 Fault (Filestore)
 File_Open=True
 Update Nak-list
 Process Metadata TLVs

N/A N/A

E11
Rx: File-Data

Reuse Senders first PDU header
If (File_Open=False)
 Open temp file
 If (Open failure?)
 Fault (Filestore)
 File_Open=True
Store file-data
Update Received_file_size
Update Nak-list

If (File_Open=False)
 Open temp file
 If (Open failure?)
 Fault (Filestore)
 File_Open=True
Store file-data
Update Received_file_size
Update Nak-list
If (File size error?)
 Fault (File size error)

N/A N/A

E12
Rx: EOF (no error)

Reuse Senders first PDU header
Update Nak-list
Tx: Ack-EOF
If (File size error?)
 Fault (File size error)
If (Is Nak-list empty?)
 State=S3
Else
 State=S2

Tx: Ack-EOF Tx: Ack-EOF N/A

E13
Rx: EOF (cancel)

Reuse Senders first PDU header
Update Condition
Tx: Ack-EOF
Possibly retain temp file
Issue Transaction-Finished
Shutdown

Update Condition
Tx: Ack-EOF
Possibly retain temp file
Issue Transaction-Finished
Shutdown

Update Condition
Tx: Ack-EOF

Issue Transaction-Finished
Shutdown

Update Condition
Tx: Ack-EOF

Issue Transaction-Finished
Shutdown

E18
Rx: Ack-Finished

N/A

N/A Issue Transaction-Finished
Shutdown

If (Condition_code<>No_Error)
 Issue Transaction-Finished
 Shutdown

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 5-8

A
pril 2007

 State:

Event:

S1
Wait for EOF

S2
Get Missing Data

S3
Send Finished and Confirm

Delivery

S4
Transaction Cancelled

E25
Ack-timeout (i.e., Partner has
not responded)

N/A N/A Start Ack-timer
If (Positive ack limit reached?)
 Fault (Ack limit)
Tx: Finished (no error)

Start Ack-timer
If (Positive ack limit reached?)
 Trigger E2
Else
 Tx: Finished (cancel)

E26
NAK-timeout (i.e., Periodic
feedback to partner)

N/A Start Nak-timer
If (Is Nak-list empty?)
 State=S3
Else if (Suspended=False
 and Frozen=False)
 If (Nak limit reached?)
 Fault (Nak limit)
 Tx: Nak

N/A N/A

E27
Inactivity Timeout

Restart Inactivity-timer
Fault (Inactivity)

Restart Inactivity-timer
Fault (Inactivity)

Restart Inactivity-timer
Fault (Inactivity)

Issue Abandoned
Shutdown

E31
Rx: Suspend Request

Trigger E4 Trigger E4 Trigger E4 Trigger E4

E32
Rx: Resume Request

If (Suspended=True)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

If (Suspended=True)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

If (Suspended=True)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

If (Suspended=True)
 Issue Resumed
 Suspended=False
 If (Frozen=False)
 Trigger E6

E33
Rx: Cancel Request

Condition=‘Cancel.request
received’
Trigger E3

Condition=‘Cancel.request
received’
Trigger E3

Condition=‘Cancel.request
received’
Trigger E3

N/A

E34
Rx: Report Request

Issue Report Issue Report Issue Report Issue Report

E40
Rx: Freeze

If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

If (Frozen=False)
 Frozen=True
 If (Suspended=False)
 Trigger E5

E41
Rx: Thaw

If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

If (Frozen=True)
 Frozen=False
 If (Suspended=False)
 Trigger E6

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-9 April 2007

5.3 STATE TABLE NOTES

5.3.1 These tables provide the logic for implementing a subset of the CFDP standard. All
required behavior for Service Classes 1 and 2 is provided. The Class 2 Sender state table
logic supports Deferred, Immediate, and Asynchronous Nak-modes—it will work with any
Class 2 Receiver. The Class 2 Receiver state table logic supports only the Deferred Nak-
mode.

5.3.2 Generally, these state tables include the minimum required behavior. An
implementer is free to add optional behavior as desired. (One example: a Receiver may issue
a File-Segm-Recv indication for each File-data PDU received. Another example: the
Prompt-Keepalive and Keepalive PDUs may be used.)

5.3.3 The state tables specify which PDU(s) are to be issued in response to each possible
event. The details concerning how these PDUs are built are left out. For example, if a state
table specifies Tx: EOF, this means to generate an EOF PDU and then transmit it. Check the
protocol specification for formatting details. (In order to build all the outgoing PDUs, it will
be necessary to store information from some of the incoming PDUs.)

5.3.4 The method used to pass PDUs to the lower communications layer is an
implementation issue. The state table logic assumes that File Directive PDUs are output
immediately and File Data PDUs are queued (and released one at a time as the lower
communications layer is ready—see Event 1). If desired, an implementer can use a different
method.

5.3.5 The set of actions taken in response to an event is not to be interrupted. For example,
if a User Request arrives while an incoming EOF is being responded to, the response to the
EOF must complete before the response to the User Request begins.

5.3.6 Where ‘if’ statements are used in the state tables, indentation is used to indicate
which lines are covered by each clause.

5.3.7 The Inactivity Timer must be reset each time a PDU is received. This is not shown in
the state tables, but must be performed. If the Inactivity Timer is not currently suspended, it
must also be restarted each time a PDU is received (i.e., a fresh countdown begins).

5.3.8 ‘Ack limit reached’ and ‘Nak limit reached’ are implementation-dependent
conditions. The state tables show the concept of using these limits, but each implementer
must fill in the details.

NOTE – If a particular event is not included in a state table, then no action is required.

5.3.9 Regarding E11+S2 of the Class 2 Receiver state table: ‘File size error’ occurs when
the offset of the received File-data extends beyond the File Size specified in the initial EOF
(no error) PDU. For example, if the EOF PDU specifies a File Size of 1200, and File-data
arrives with an offset of 1000 and length of 500, then a ‘File size error’ Fault will occur.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-10 April 2007

5.4 KERNEL

5.4.1 The kernel keeps a list of active state machines. For each state machine, the kernel
keeps track of which transaction it is assigned to, its role (e.g., Class 2 Sender), and its
current state (S1, S2, …, or Completed). Each state machine starts in state S1; when
finished, it sets its state to Completed. The kernel also receives all incoming PDUs and User
Requests, and decides what action to take.

5.4.2 Kernel logic for incoming PDUs:

 Take note of the Mode (Unack or Acknowledged)--If an entity does not provide both Class 1

 and Class 2 service, then the kernel must check for an Invalid Transmission Mode fault;

 see the protocol specification for details.

 Take note of the Direction (Toward Sender or Toward Receiver).

 Determine which transaction the PDU references.

 If (an active state machine is assigned to that transaction AND has the proper role),

 If (that state machine’s state is not Completed),

 Deliver the PDU to that state machine.

 Else

 Remove that state machine from the list of active state machines.

 Consult table 5-5.

 Else

 Consult table 5-5.

Table 5-5: Kernel Actions for Incoming PDUs

PDU type
Direction=Toward_Sender
And Mode=Unack

Direction=Toward_Sender
And Mode=Acked Direction=Toward_Receiver

 Metadata Ignore Ignore Start new machine*
 File-data Ignore Ignore Start new machine*
 EOF Ignore Ignore Start new machine*
 Ack Ignore Ignore Ignore
 Nak Ignore Ignore Ignore
 Fin Ignore Send an Ack-Fin Ignore

 *Start new machine means start a new state machine and deliver the PDU to it.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-11 April 2007

Kernel logic for incoming User Requests:

 If (Request is a Put Request)

 Start a new state machine (S1 or S2, as appropriate) and deliver the Put Request to it.

 Else

 Take note of which transaction the Request references:

 If (an active state machine is assigned to that transaction),

 If (that state machine’s state is not Completed),

 Deliver the Request to that state machine.

 Else

 Remove that state machine from the list of active state machines.

 Ignore the Request.

 Else

 Ignore the Request.

5.5 EVENTS

NOTE – A single set of events is defined (i.e., event E31 is the same for all state tables).
Most events are delivered to the state tables. Derived events are triggered from
within a state table.

5.5.1 DERIVED EVENTS

 E0 - Entered this state. This event is implicit whenever a state change occurs.

 E1 - Please send some file-data. This allows File-data to be metered out one PDU at a time.

 E2 - Abandon this transaction.

 E3 - Notice of Cancellation.

 E4 - Notice of Suspension.

 E5 - Suspend timers.

 E6 - Resume timers.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-12 April 2007

5.5.2 RECEIVED A PDU

 E10 - Metadata

 E11 - File-data

 E12 - EOF (no error)

 E13 - EOF (cancel)

 E14 - Ack-EOF

 E15 - Nak

 E16 - Finished (no error)

 E17 - Finished (cancel)

 E18 - Ack-Finished

5.5.3 TIMEOUT

 E25 - Ack-timeout

 E26 - Nak-timeout

 E27 - Inactivity-timeout

5.5.4 RECEIVED A USER REQUEST

 E30 - Put

 E31 - Suspend

 E32 - Resume

 E33 - Cancel

 E34 - Report

5.5.5 OTHER EVENTS

 E40 - Freeze

 E41 - Thaw

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-13 April 2007

5.6 ACTIONS

5.6.1 OVERVIEW

For each possible event, the state tables specify a set of actions to be taken. Some actions are
described in more detail, as follows:

a) …temp file… (e.g., Open temp file, Copy temp file to dest file, Close temp file):
The temp file is a concept; it is a place to store incoming file-data until the Receiver
decides whether or not to accept the file. How this is accomplished is
implementation-dependent. Incoming file-data is stored in the temp file until the file
is accepted; then the data is stored in the file specified by the Destination-File-Name
field in the Metadata PDU.

b) …Nak-list… (e.g., Update Nak-list): The Nak-list is a concept. All Receivers must
keep track of which data has been received and which data is missing. The state
tables call that information the Nak-list. The method used is implementation-
dependent.

c) Comm layer ready?: The state tables assume that File Directive PDUs are output
‘immediately’, and that File-data PDUs are output one at a time ‘when the
communication layer is ready’. This mechanism is not required by the protocol;
implementers can use a different mechanism if they care to.

d) Execute Filestore Requests: Execute any Filestore Requests that were present in the
Metadata PDU.

e) Fault: A fault was detected; take action as specified by the Fault Handler Table. See
subsection 5.6.2 for details. Some fault names are shortened in the state tables, as
follows:

1) Positive ACK limit reached Ack limit;

2) Filestore rejection Filestore;

3) File checksum failure File checksum;

4) File size error File size;

5) Nak limit reached Nak limit;

6) Inactivity detected Inactivity;

7) Invalid file structure File structure.

f) File size error?: If the Received File Size (see Update received_file_size) is greater
than the File Size referenced in the EOF PDU, then there is a File Size Error.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-14 April 2007

g) Initialize: Condition=No_Error, Delivery=Incomplete, Frozen=False,
Metadata_received=False, Pdu_Received=False, Suspended=False, Initialize the
Nak-list, Load MIB parameters (e.g., the Fault Handler Table, Ack-timeout, Nak-
timeout), Start the Inactivity-timer (Class 1 Receiver and Class 2 Receiver only).

h) N/A: No action is required.

i) Possibly retain temp file: This action occurs when a transaction is not fully
successful. The protocol allows the file-data to be retained, if desired. See the
protocol specification for details.

j) Process Metadata TLVs: If there are any TLV (type-length-value) items included in
the Metadata PDU, then handle them as described in the protocol specification. For
example, User Messages are passed to the User immediately; Fault Handler Overrides
are used to update the Fault Handler Table immediately, and Filestore Requests are
stored for later execution.

k) Queue nakked data: Resend any nakked Metadata immediately; queue any nakked
File-data for release (how this is done is implementation-dependent).

l) Reuse Senders first PDU header: If (Pdu_Received=False), then:

1) store a copy of the PDU-header from this incoming PDU;

2) reverse the ‘Direction’ field;

NOTE – Use this header as the PDU-header for all outgoing PDUs.

3) Pdu_Received=True.

m) Shutdown: Cancel all timers; close any open files (and/or release all file buffers); set
the state to Completed. No action is taken in the Completed state; therefore, it is not
shown in the state tables.

n) Store file-data: Store any new incoming file-data in the temp file (discard any File-
data that has already been received).

o) Update Condition: Update the internal variable Condition. When an EOF (cancel)
or Finished (cancel) is received, the condition is copied from the Condition Code
field in the incoming PDU.

p) Update received_file_size: Keep track of the highest file-offset within all the file-
data received during this transaction (i.e., what is the size of the received file?).

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-15 April 2007

5.6.2 FAULTS

5.6.2.1 Overview

The specific faults that can occur are defined in the protocol specification. The response to
each fault is contained in the Fault Handler Table. The Fault Handler Table contents are
specified in the MIB, and can be overridden by an incoming Metadata PDU. The possible
responses to a fault are defined in the protocol specification. They are ignore, suspend,
cancel, or abandon.

5.6.2.2 Responding to Faults

When a fault occurs, follow this logic:

 Look in the Fault Handler Table to see what response is specified.

 If (response=ignore)

 Simply continue.

 Else if (response=suspend)

 Trigger event E4, and do not perform any remaining actions within the current event.

 Else if (response=cancel)

 Set the internal variable Condition to whichever fault occurred.

 Trigger event E3, and do not perform any remaining actions within the current event.

 Else if (response=abandon)

 Set the internal variable Condition to whichever fault occurred.

 Trigger event E2, and do not perform any remaining actions within the current event.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 5-16 April 2007

5.7 INTERNAL VARIABLES

NOTE – In addition to those variables shown here, there are a variety of MIB parameters
(e.g., Ack_timeout, Nak_timeout, etc). Check the protocol specification for
details on MIB parameters.

Internal variables are as follows:

a) Condition: Equivalent to the Condition Code shown in the protocol specification (see
the section on PDU formats). Typical values are ‘No Error’ or ‘Cancel.request
received’.

b) Delivery: Equivalent to the Delivery Code shown in the protocol specification (see
the Finished PDU format). The value is either ‘Complete’ (all data received) or
‘Incomplete’ (some data missing).

c) File_Open: Indicates whether or not a temp file has been opened.

d) Frozen: Indicates whether or not the transaction is currently frozen.

e) Metadata_Received: Indicates whether or not a Metadata PDU has been received.

f) Pdu_Received: Indicates whether or not a PDU has been received.

g) Suspended: Indicates whether or not the transaction is currently suspended.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 6-1 April 2007

6 AN SDL/GRAPHICAL REPRESENTATION OF CFDP STATE
DIAGRAMS

NOTE – Contributed by Hiroaki Miyoshi, National Space Development Agency
(NASDA)/NEC Toshiba Space Systems.

6.1 PURPOSE AND SCOPE

This section provides state diagrams of the CCSDS CFDP Entities using the International
Telecommunication Union (ITU) Specification and Description Language (SDL) graphical
representation technique (reference [4]). These representations are not intended as
replacements for the natural-language specifications provided in the CFDP Blue Book, but as
a pilot boat to navigate specifications for implementers.

These representations describe procedures for Class 1-Source, Class 1-Destination, Class 2-
Source and Class 2-Destination entities with the following MIB settings:

a) Immediate NAK mode enabled - no;

b) Prompt NAK mode enabled - no;

c) Asynchronous NAK mode enabled - no;

d) CRCs required on transmission - false.

6.2 STATE DIAGRAM TERMINOLOGY

6.2.1 INTERFACES

‘UI’ - Interface for CFDP SERVICE PRIMITIVES (see reference [1], subsection 3.5).

‘UT’ - Interface for CFDP PDUs (see reference [1], section 5).

6.2.2 VARIABLES

See subsection 5.7.

6.2.3 TIMER OPERATIONS

‘start’ – preset and start (or restart) an ACK, Inactivity or NAK timer (see reference [1],
subsection 4.1.6.4).

‘cancel’ – reset and stop an ACK, Inactivity or NAK timer (see reference [1], subsection
4.1.11).

‘Suspend’ – suspend an ACK or Inactivity timer (see reference [1], subsection 4.1.11).

‘Resume’ – resume an ACK or Inactivity timer (see reference [1], subsection 4.1.6.7).

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 6-2 April 2007

6.2.4 DECISIONS

See subsection 5.6.

6.2.5 PROCEDURES

See subsections 5.3, 5.4 and 5.6.

6.2.6 ABBREVIATIONS

‘XN’ – the abbreviation for a ‘Transaction’.

‘Filestore reqs?’ – the abbreviation for ‘Filestore Requests?’.

6.3 GRAPHICAL SYMBOL CONVENTION

This subsection contains a summary of graphical symbols used in the state diagrams depicted
in figures 6-1 through 6-4. Detailed information about symbols is described in the SDL
recommendations.

Decision symbol

Comment symbol

Input symbol

Output symbol (dotted: optional)

Procedure call symbol

Start symbol

State symbol

Task symbol

Stop symbol

Macro symbol

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 6-3 April 2007

Process PUT

Fault(Filestore)

UT:EOF(No error)

Entire file sent?

UT:File Data

UI:PUT

UT:Metadata

(yes)

(no)

UI:TRANSACTION

UI:TRANSACTION-
FINISHED(condition)

Send File

condition :=No error

Send File

UI:EOF-SENT

File structure?

(yes)

(NG)

File Transfer?

Send Metadata

Open failure?

Fault(File structure)

(no)

(yes)

(no)

(OK)

UT:EOF(No error)

UI:TRANSACTION-
FINISHED(condition)

UI:EOF-SENT

!Suspended
&& !Frozen

Comm layer ready?

(yes)

(yes)

(no)

(no)

UI:SUSPEND UI:RESUME UI:CANCEL UI:FREEZE UI:THAWPlease send
 file-data

Suspended :=
True

!Suspended

UI:Suspended

(no)

(yes)

Suspended

UI:Resumed

Suspended :=
False

!Frozen
Please send

file-data

(yes)

(no)

Please send
file-data

condition :=
Cancel.req
received

UT:EOF
(condition)

UI:XN-FINISHED
(condition) Frozen :=

True

Frozen

!Suspended

Frozen :=
False

Please send
file-data

(yes)

(no)

(yes)

(no)

(yes)

(no)

Shutdown

Shutdown

ShutdownPlease send
file-data

Open source file

Figure 6-1: Class 1 Source State Diagram

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 6-4 April 2007

File integrity check

UT:Metadata

UT:File Data

Process MD TLVs

UT:EOF(No error)

UI:XN-FINISHED
(condition)

File checksum
failure?

Wait for EOF

Open failure? (yes)

(no)

Fault(Filestore)

File size error?

(no)

(yes)

Delivery:=Complete

Execute
filestore requests

Wait for EOF

File transfer?

Open temp file
(yes)

(no)

File transfer?

Close temp file
(yes)

(no)

(no)

(yes) Fault
(File Checksum)

Fault(File size)

Copy temp file
to dest file

Copy error?
(no)

(yes)
Fault(Filestore)

UI:CANCEL

Update Condition

Inactivity timeout

Start(Inactivity-timer)

Start(Inactivity-timer)

Shutdown

Fault(Inactivity)

Start(Inactivity-timer)

UT:EOF(No error) UT:EOF(Cancel)

UT:EOF(cancel)

Condition :=
Cancel.req received

Possibly retain temp file

UI:XN-FINISHED
(condition)

Shutdown

File transfer?

Start(Inactivity-timer) Start(Inactivity-timer)

(yes)

(no)

UI:XN-FINISHED
(No error)

Shutdown

UI:XN-FINISHED
(Cancel)

Shutdown

UI:FILE-SEGMENT-
RECV

Store file-data

Update Received file size

UI:CANCEL
Condition :=

Cancel.req received
UI:XN-FINISHED

(condition)

Shutdown

Condition :=
Cancel.req received

UI: METADATA-
RECV

Figure 6-2: Class 1 Destination State Diagram

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 6-5

A
pril 2007

(yes)

(yes)

UT:EOF(No error)

Please send file-data UT:NAK

UT:File Data

Queue nakked data

UI:PUT

(yes)

UT:Finished
(Cancel.req received)

UT:
ACK(Finished)

UI:XN-FINISHED
(condition)

Process PUT

File transfer?

Send the File Once

Entire file sent? (no)

Send the File Once

Start(ACK-timer)

Send EOF;
Fiil Any Gaps Send the File Once

UI:EOF-SENT

See Class 1
Source

Send Metadata

Open failure?

File structure?

(no)

Fault(File structure)

Fault(Filestore)

Send EOF;
Fill Any Gaps

(no)

(OK)

(NG)

Please send
file-data

!Suspended
&& !Frozen

Comm layer
ready?

Please send
file-data

(yes)

(no)

(yes)

!Suspended
&& !Frozen

(yes)

(no)

Update Condition

Shutdown

UI:SUSPEND UI:RESUME UI:CANCEL FREEZE THAW

Suspended :=
True

!Suspended

UI:Suspended

(no)

(yes)

Suspended

UI:Resumed

Suspended := False

!Frozen

(yes)

(no)

Please send
file-data

Condition :=
Cancel.req received

UT:EOF(condition)

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

(yes)

(no)

Send the File Once Send the File Once Send the File Once Send the File Once

release file
re-Tx buffer

Suspended := False

Start(ACK-timer)

Transaction
Cancelled

Open source file

(no)

Please send
file-data

Start(Inactivity-timer)

Start(Inactivity-timer)

Start(Inactivity-timer)

UT: EOF(No error)

UI: EOF-SENT

Start(Ack-timer)

Start(Inactivity-timer)

UI:XN-FINISHED
(condition)

Figure 6-3: Class 2 Source State Diagram

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 6-6

A
pril 2007

UT:ACK(EOF) UT:Finished
(No error)

UT:
ACK(Finished)

Send EOF;
Fill Any Gaps

ACK-timeout

Positive ack
limit reached?

UT:EOF
(No error)

Start(ACK-timer)

Fault(ACK limit)

Cancel(ACK-timer)

UI:XN-FINISHED
(No error)

UT:Finished
(! No error)

UT:
ACK(Finished)

Shutdown

UI:SUSPEND UI:RESUME UI:CANCEL FREEZE UI:THAW

Suspended :=
True

!Suspended(no)

(yes)
Suspended

Suspended :=
False

!Frozen

(yes)

(no) Condition :=
Cancel.req received

UT:EOF
(condition)

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

(yes)

(no)

Send EOF;
Fill Any Gaps

Send EOF;
Fill Any Gaps

Send EOF:
Fill Any Gaps

Send EOF;
Fill Any Gaps

Suspended := False

Start(ACK-timer)

Transaction
Cancelled

UT:NAK

Queue nakked
data

!Suspended
&& !Frozen

(yes)

(no)

Send EOF;
Fill Any Gaps

Start
(Inactivity-timer)

relase file
re-Tx buffer

Update Condition

relase file
re-Tx buffer

UI:XN-FINISHED
(condition)

Send EOF;
Fill Any Gaps

Shutdown

Fault(Inactivity)

Inactivity-
timeout

Start
(Inactivity-timer)

!Frozen

Suspend
(ACK-timer)

(yes)

(no)

Resume
(ACK-timer)

!Suspended
(yes)

(no)

Suspend
(ACK-timer)

Resume
(ACK-timer)

Please send
file-data

Please send file-
data

UT:
File Data

!Suspended
&& !Frozen

Comm layer
ready?

File-data
queued?

(no)

(yes)

(yes)

(no)

(yes)

(no)

Please send
file-data

Send EOF;
Fill Any Gaps

(no)

(yes)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Please send
file-data

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Please send
file-data

Start(Inactivity-timer) Start(Inactivity-timer)

UI:Suspended UI:Resumed

Is Ack-timer
 running?

(yes)

(no) Is Ack-timer
 suspended?

(no)

(yes)

Is Ack-timer
 running?

(no)

(yes)

Is Ack-timer
 suspended?

(no)

(yes)

Send EOF;
Fill Any Gaps

UT:ACK(EOF) ACK-timeout

Positive ack
limit reached?
(no)

(yes)

UT:EOF
(condition)

Start(ACK-timer)

UT:Finished
(! No error)

UT:
ACK(Finished)

Shutdown

Transaction
Cancelled

Transaction
Cancelled

Transaction
Cancelled

Transaction
Cancelled

Condition
!=No error

(yes)

(no)

Transaction
Cancelled

Update Condition

relase file
re-Tx buffer

UI:XN-FINISHED
(condition)

Transaction
Cancelled

relase file
re-Tx buffer

Shutdown

UI:ABANDONED
(condition)

Shutdown

UI:SUSPEND UI:RESUME

Suspended :=
True

!Suspended(no)

(yes)

Suspended

Suspended :=
False

!Frozen

(yes)

(no)

(yes)

(no)!Frozen

Suspend
(ACK-timer)

(yes)

(no)

Resume
(ACK-timer)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

FREEZE UI:THAW

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

!Suspended
(yes)

(no)

Suspend
(ACK-timer)

Resume
(ACK-timer)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Inactivity-
timeout

Update Condition

UI:Suspended UI:Resumed

UI:XN-FINISHED
(condition)

Figure 6-3: Class 2 Source State Diagram (continued)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 6-7

A
pril 2007

UT:Metadata

UI:METADATA-
RECV

Wait for EOF

UT:EOF(No error) UT:EOF(Cancel)

Shutdown

UI:XN-FINISHED
(Cancel)

Process MD TLVs

Open failure? (yes)

(no)

Fault(Filestore)

File transfer?

Open temp file

Start(Inactivity-timer)

MD_received := true

(yes)

UI:FILE-
SEGMENT-RECV

UT:File Data

Open temp file

Open failure?

Store file-data
Update Received file

size

Update Nak-list

(no)

Start(Inactivity-timer)

(yes)

(no)

Update Nak-list

Start
(Inactivity-timer)

UT:ACK(EOF)

Get Missing Data

UT:Metadata

Wait for EOF

UT:EOF(No error)

Process MD TLVs

Open failure? (yes)

(no)

Fault(Filestore)

File transfer
&& No open file?

Open temp file

Start
(Inactivity-timer)

MD_received := true

(no)

(yes)

(yes)

UI:FILE-
SEGMENT-RECV

UT:File Data

Open temp file

Open failure?

Store file-data
Update Received

 file size

Update Nak-list

(no)

Start
(Inactivity-timer)

(yes)
(no)

Update Nak-list

Start(Inactivity-timer)

UT:ACK(EOF)

Is nak-list empty?

No open file?
(yes)

(no)

Get Missing Data Send Finished and
Confirm Delivery

Cancel(Nak-timer)

Start
(Inactivity-timer)

Update Condition

UT:ACK(EOF)

MD received?

Execute filestore
requests

File integrity check

Filestore reqs?

UT:Finished
(No error)

Start(Ack-timer)

(yes)

(no)

(yes)

(no)

Fault(Inactivity)

Inactivity timeout

Start(Inactivity-timer)

UI:SUSPEND

Suspended := True

!Suspended

UI:Suspended

(no)

(yes)

Wait for EOF

!Frozen

Suspend
(Inactivity-timer)

(no)

(yes)

UI:RESUME UI:CANCEL FREEZE THAW

Suspended

UI:Resumed

Suspended := False

!Frozen

(yes)

(no) Condition :=
Cancel.req received

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

(yes)

(no)

Wait for EOF Wait for EOF Wait for EOF

Suspended := False

Start(ACK-timer)

Transaction
Cancelled

Resume
(Inactivity-timer) Resume

(Inactivity-timer)

!Suspended
(no)

(yes)
Suspend

(Inactivity-timer)
Suspended
 || Frozen

(no)

(yes)

UT:Nak

Start(Nak-timer)

File_Open := true

UT:EOF(Cancel)

Shutdown

Start(Inactivity-timer)

Update Condition

UI:XN-FINISHED
(Cancel)

UT:Finished
(Cancel)

UT:ACK(EOF)

Update Nak-list

File_Open := true

Update Nak-list

UI:METADATA-RECV

File_Open := true

Possibly retain
 temp file

Possibly retain
 temp file

File size error? Fault(File Size)
(yes)

(no)

UI:XN-FINISHED
(Cancel)

UI:XN-FINISHED
(No error)

Suspended
 || Frozen

(no)

(yes)

UT:Nak

Start(Nak-timer)

File_Open := true

See Class 1
Destination

Figure 6-4: Class 2 Destination State Diagram

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 6-8

A
pril 2007

UT:EOF(No error)

UT:ACK(EOF)

Get Missing Data

Get Missing Data

Nak-timeout

If Nak-list
empty?

Fault(Nak limit)

UT:ACK(Finished)

UT:EOF(cancel)

Shutdown

UI:SUSPEND UI:RESUME UI:CANCE L FREEZE UI:THAW

Suspended := True

!Suspended

UI:Suspended

(no)

(yes)

Suspended

UI:Resumed

Suspended := False

!Frozen

(yes)

(no) Condition :=
Cancel.req received

UT:Finished
(cancel)

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

(yes)

(no)

Get Missing Data Get Missing Data Get Missing Data Get Missing Data

Suspended := False

Start(ACK-timer)

Transaction
CancelledGet Missing Data

Update Condition

UI:XN-FINISHED
(condition)

Fault(Inactivity)

Inactivity-timeout

Start(Inactivity-timer)

!Frozen
(yes)

(no)
!Suspended

(yes)

(no)

Shutdown

Send Finished and
Confirm Delivery

Send Finished and
Confirm Delivery

Send Finished and
Confirm Delivery

Transaction
Cancelled

Send Finished and
Confirm Delivery

(no)

(yes)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Start(Inactivity-timer) Start(Inactivity-timer)

UT:Metadata

UI:ME TADATA-
RECV

Process MD TLVs

Open failure?
(yes)

(no)

File transfer &&
No open file?

Open temp file

Start
(Inactivity-timer)

MD_received := true

(yes)

(no)

MD received?(yes)

(no)

Suspended
 || Frozen

(yes)

(no)
Nak limit
reached?

(yes)

(no)

Get Missing Data

UT:Nak

Fault(Filestore)

UT:File Data

Start(Inactivity-timer)

No open file?

Open temp file

Open failure?
(yes)

(no)

UI:FILE-SEGMEN T-
RECV

Store file-data
Update Received file

size

Update Nak-list

(yes)

File size error?

Fault(File size)

(yes)

(no)

Get Missing Data

UT:ACK(EOF)

Possibly retain
 temp file

UI:RESUME

Suspended

UI:Resumed

Suspended := False

!Frozen

(yes)

(no)

(yes)

(no)

Send Finished and
Confirm Delivery

Resume
(Inactivity-timer)

Resume
(Ack-timer)

UT:EOF(cancel)

Shutdown

Update Condition

UI:XN-FINISHED
(condition)

Start(Inactivity-timer)

UT:ACK(EOF)
Fault(Inactivity)

Inactivity-timeout

Start(Inactivity-timer)

Ack-timeout

Positive ack
limit reached?

Fault(Ack limit)

Send Finished and
Confirm Delivery

(yes)

(no)

UT:Finished
(No error)

UI:SUSPEND UI:CANCE L FREEZE UI:THAW

Suspended := True

!Suspended

UI:Suspended

(no)

(yes)

Condition :=
Cancel.req received

UT:Finished
(cancel)

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

Suspended := False

Start(ACK-timer)

!Frozen
(yes)

(no)
!Suspended

(yes)

(no)

Suspend
(Inactivity-timer)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Suspend
(Ack-timer)

UT:EOF(No error)

UT:ACK(EOF)

Send Finished and
Confirm Delivery

Suspend
(Ack-timer)

Resume
(Ack-timer)

Start(Ack-timer)Start(Inactivity-timer)Start(Inactivity-timer)

Update Nak-list

File_Open := true

Start(Nak-timer)
(no)

File_Open := true

Possibly retain
 temp file

UI:XN-FINISHED
(Cancel)

UI:XN-FINISHED
(cancel)

Cancel(Nak-timer)

Execute filestore
requests

File integrity check

Filestore reqs?

UT:Finished
(No error)

Start(Ack-timer)

(yes)

(no)

UI:XN-FINISHED
(No error)

See Class 1
Destination

Figure 6-4: Class 2 Destination State Diagram (continued)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 6-9

A
pril 2007

Transaction
Cancelled

UT:ACK(Finished)

Shutdown

Transaction
Cancelled

Transaction
Cancelled

Transaction
Cancelled

UI:RESUME

Suspended

UI:Resumed

Suspended := False

!Frozen

(yes)

(no)

(yes)

(no)

Transaction
Cancelled

Resume
(Inactivity-timer)

Resume
(Ack-timer)

UT:EOF(cancel)

Shutdown

Update Condition

Start(Inactivity-timer)

UT:ACK(EOF)

Inactivity-timeout

Update Condition

Ack-timeout

Positive ack
limit reached?

Transaction
Cancelled

(yes)

(no)

UT:Finished
(cancel)

UI:SUSPEND FREEZE UI:THAW

Suspended := True

!Suspended

UI:Suspended

(no)

(yes)

Frozen := True

Frozen

!Suspended

Frozen := False

(yes)

(no)

(yes)

(no)

!Frozen

(yes)

(no)

!Frozen
(yes)

(no)
!Suspended

(yes)

(no)

Suspend
(Inactivity-timer)

Suspend
(Inactivity-timer)

Resume
(Inactivity-timer)

Suspend
(Ack-timer)

Transaction
Cancelled

Suspend
(Ack-timer)

Resume
(Ack-timer)

Condition !=
No error?

(no)

(yes)

Shutdown

UI:ABANDONED
(condition)

Start(Ack-timer)

UI:XN-FINISHED
(condition)

Figure 6-4: Class 2 Destination State Diagram (continued)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-1 April 2007

7 IMPLEMENTATION CONSIDERATIONS

7.1 OVERVIEW

The CFDP protocol was designed to provide file delivery services in a wide variety of space
missions which were derived from a series of representative, but generic, scenarios.

In the context of a specific mission, many considerations can affect the way that CFDP
services will be requested and solicited. For example:

a) mission analysis;

b) system requirements (reliable/unreliable transfers, autonomy, and transfer initiative
management);

c) spacecraft orbit and visibility (Low Earth Orbit [LEO], Geosynchronous Earth Orbit
[GEO], Geosynchronous Transfer Orbit [GTO], and Deep Space);

d) onboard data handling capabilities;

e) ground stations density (disjoint/overlapping passes);

f) ground segment connectivity (bandwidth limitation);

g) ground segment topology and interfaces (functional distribution, reusability of
existing components, compatibility issues);

h) operational requirements (pass management, ground station availability);

Such considerations may lead to the selection of specific classes or subsets of the CFDP
(e.g., reliable or unreliable modes of data transmission). In order that the protocol may
successfully operate in any particular mission environment, it must be complemented by
implementation-specific information and enabling mechanisms.

7.2 IMPLEMENTATION NOTES

NOTE – Subsections 7.2.1 through 7.2.3 all refer to reference [1].

7.2.1 The action taken upon detection of a File Checksum Error or of a File Size Error need
not necessarily entail discarding the delivered file. The default handler for File Size Error
faults may be Ignore, causing the discrepancy to be announced to the user in a
Fault.indication but permitting the completion of the Copy File procedure at the
receiving entity. This configuration setting might be especially appropriate for transactions
conducted in unacknowledged mode.

7.2.2 In reference to Completion Procedures at the Receiving Entity, it should be noted that
whether the incomplete data are retained even if the Metadata PDU has not been received,
and therefore the Destination file name is unknown, is implementation-specific.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-2 April 2007

7.2.3 The 8-bit Listing Response Code in the Directory Listing Response record gives
implementers the option of providing detailed and informative response codes that might be
specific to particular implementations of filestore functionality, e.g., to identify specific types
of directory structure corruption.

7.3 TRANSFERRING SUPPORTING INFORMATION

During the CFDP design phase, considerable effort was deployed to avoid an exponential
expansion of the number of optional parameters carried by CFDP PDUs. To reduce
complexity, CFDP is intentionally restricted to a minimum set of primitives sufficient to
achieve its primary objective of transferring files.

In situations where it is necessary to convey CFDP-related information to a remote system,
the information is propagated outside of the CFDP protocol.

Basically, three alternative ‘bypass’ solutions are suggested:

a) CFDP may be used to transfer a ‘message to user’ using a metadata PDU for an FDU
that does not contain file data. The message will be passed to the CFDP user and
from there it may be conveyed to a local application using implementation-specific
mechanisms. This ‘user to user’ pass-through interface can be used to deliver a
mission-specific directive or option. For example: ‘suspend transaction number X in
6 minutes then auto resume this transaction in 7 hours and 35 minutes’ is the kind of
macro directive not supported by CFDP, but which can be carried by CFDP to an
appropriate application via the CFDP ‘message to user’.

b) CFDP may be used to transfer a file with an associated message to user. For
example, ‘here is a file containing pass schedules for next 10 days’.

c) CFDP is not the only way to communicate with the remote system, and any
alternative interface (Telecommand [TC] or Telemetry [TM] packet) can be used to
carry unsupported CFDP features. For example, ‘this packet means that remote
CFDP is momentarily off, due to an onboard reconfiguration’.

Bypass and proprietary solutions should only be used when basic CFDP services are not able
to provide the required function.

7.4 EXAMPLE FILE CHECKSUM CALCULATION

NOTE – Contributed by Hiroaki Miyoshi, NASDA/NEC.

7.4.1 SPECIFICATIONS

As specified in reference [1], the checksum shall be 32 bits in length and calculated by the
following method:

a) it shall initially be set to all ‘zeroes’;

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-3 April 2007

b) it shall be calculated by modulo 232 addition of all 4-octet words, aligned from the
start of the file;

c) each 4-octet word shall be constructed by copying into the first (high-order) octet of
the word, some octet of file data whose offset within the file is an integral multiple of
4, and copying the next three octets of file data into the next three octets of the word;

d) the results of the addition shall be carried into each available octet of the checksum
unless the addition overflows the checksum length, in which case carry shall be
discarded.

7.4.2 EXAMPLE

NOTE – This subsection contains an example of creating the checksum, developed by NASDA.

The checksum is calculated by modulo 232 addition of 4-octet integers. The integers are
constructed from 4-octet sets aligned from the start of the file. Each set is converted to an
integer by placing its first octet in the leftmost octet of the integer, and so on, up to the fourth
octet which is placed in the rightmost octet. The integer is then added to the 4-octet running
total, ignoring addition overflow.

Octets may be omitted, either because file segments arrive out of order or because the file
size is an inexact multiple of 4, i.e., 32 bits. Missing octets may be substituted with zeroes
for the purposes of checksum calculation, as addition is commutative.

Worked example:

a. Consider a 10-byte file:
0x8a 0x1b 0x37 0x44 0x78 0x91 0xab 0x03 0x46 0x12

b. The checksum calculation is:
 0x8a1b3744 Bytes 0-3

+ 0x7891ab03 Bytes 4-7
 0x102ace247
& 0xffffffff Modulo 232, clear carry flag
 0x02ace247

+ 0x46120000 Bytes 8-9, padded with trailing zeroes
 0x48bee247 Final checksum, carry flag not set

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-4 April 2007

7.5 JPL NOTES ON CFDP IMPLEMENTATION

NOTE – Contributed by Scott Burleigh, NASA/JPL.

7.5.1 OVERVIEW

The Jet Propulsion Laboratory’s (JPL) implementation of CFDP has been aimed at reducing
the need for active management of the protocol to the lowest level possible, in the
expectation that maximizing protocol agent autonomy will help minimize the cost of
operating complex deep space missions (the Mars program, for example). Here is a
discussion of several design approaches embodied in that implementation which other
implementers might (or might not) find useful.

7.5.2 DEFERRED TRANSMISSION

Deferred transmission can offer a degree of convenience to applications: it simplifies
applications by relieving them of the need to know when communication links are active.

Deferred transmission makes CFDP responsible for scheduling file delivery to various other
CFDP entities. Two implementation measures support this:

a) First, the function of responding to application requests for file delivery is partitioned
from the function of handing data to the link layer for transmission; the former is
handled by the fdpd (FDP daemon) task, the latter by a separate fdpo (FDP output)
task (fdpd is always running, but fdpo runs only while the communication link to a
specific CFDP entity is active). In response to application requests, fdpd constructs
CFDP PDUs and enqueues them in persistent FIFOs (linked lists) of data destined
for the designated entities; separately, fdpo dequeues PDUs from those FIFOs and
passes them on to the underlying communication system for immediate radiation.
The FIFOs grow while links are inactive, and shrink while they are active, but this is
transparent to applications.

b) Second, the implementation fully supports the ‘link state change’ procedures by
communicating these changes to fdpo. CFDP itself is just a communication protocol,
not an operating system; in order for the host of the CFDP entity (spacecraft, ground
station, whatever) to be able to use CFDP for communication, the host itself must
establish the communication links that CFDP will use. Some mechanism—e.g.,
scheduled tracking passes, beacon response, or some combination of both—must
therefore exist for commanding the host to establish and break those links. This
implies that knowledge of link state already exists outside of CFDP, so delivery of
that knowledge to CFDP can be used to control fdpo tasks. In the case of a single
entity that can communicate with multiple remote entities, those external link state
cues also tell fdpo which entity is currently ‘in view’ and, therefore, from which
FIFOs to dequeue PDUs.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-5 April 2007

By relying on link state cues to control the operation of fdpo, we can accommodate
occultation and other interruptions in connectivity simply and efficiently: when the link is
lost, CFDP simply stops transmission and reception of data between the two endpoints of the
link. This implementation of deferred transmission incurs far less overhead than using the
Remote Suspend and Resume user operations to control suspension and resumption of
communication:

a) Remote Suspend and Resume operations entail protocol activity, requiring a
cooperative interchange of data between entities. Deferred transmission is entirely
local; no PDUs are issued or received to affect it.

b) Because deferred transmission is an entirely local mechanism, it is unaffected by
delay due to the distance between the participating entities. Moreover, there is no
chance of incomplete remote suspension/resumption due to loss of a PDU.

c) Remote Suspend and Resume are transaction-specific. This means that suspending
all transmission between any pair of entities would require the reliable transmission
of PDUs for every transaction currently in progress between them, as would
resumption of transmission. In contrast, the deferred transmission mechanism is
atomic and comprehensive.

7.5.3 PDU QUEUING WITHIN THE CFDP ENTITY

Under some circumstances, CFDP PDUs should be physically transmitted (radiated) in an
order that differs from the order in which they were generated.

Operational considerations or other user constraints may require that access to transmission
bandwidth be allocated among multiple ‘flows’ according to a user-visible management
algorithm. Typically, it may be necessary to prevent the transmission of a single large but
non-critical file from delaying the delivery of small but critical files whose transmission is
requested later. The CFDP ‘flow label’ mechanism is intended to address this sort of
requirement. The various ‘flows’ are typically implemented as logically distinct
transmission channels within CFDP that must be multiplexed on output.

Additionally, though, some PDUs that serve only CFDP internal control purposes may need
to be radiated on an urgent basis, possibly ahead of a large number of file data PDUs that are
currently queued for transmission. A single CFDP service request or protocol procedure may
result in the transmission of multiple PDUs. Since any single transmission medium can only
send one value at a time, a CFDP implementation must provide some mechanism for
imposing a rational order of transmission on those PDUs. Typically queues (or FIFOs) are
the basis for this mechanism. However, PDU queuing must be done carefully in order to
avert various kinds of trouble. In particular, if a single queue is used and new PDUs are
always added to the back of this queue, then:

a) The File Data PDUs for an urgently needed file can never be transmitted until the
previously queued PDUs of less important files, bound for the same destination
entity, have been transmitted.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-6 April 2007

b) An ACK PDU will never be transmitted until all previously queued PDUs have been
transmitted. This makes the arrival time of the ACK heavily dependent on the size of
the backlog of PDUs pending transmission at the ACK’s sending entity. Since this
size is difficult or impossible to estimate accurately, the sender of the PDU to which
the ACK is responding cannot accurately anticipate the ACK’s arrival time; it
therefore cannot know with any accuracy when to presume data delivery failure and
retransmit the PDU.

One alternative approach is to use a single queue but manage it intensively, inserting new
PDUs not just at the back but at various points throughout the queue, and possibly
rearranging items within the queue as necessary.

Another approach, which seems structurally more complex but may be procedurally simpler,
is to use multiple queues and merge them at the point of access to the Unitdata Transfer (UT)
layer. A possible implementation is discussed in 7.5.5.

A further note on the effect of queuing on ACK arrival time: selection of accurate
retransmission timer intervals in CFDP is difficult, but it need not be impossible. Nearly all
of the uncertainty in computing these values can be removed if the CFDP implementation
observes these principles (refer to 7.5.6 for a fuller discussion):

a) A positive acknowledgment timer should not be started until the affected PDU can be
assumed to have been physically radiated. A service indication from the UT layer
may be required for this purpose.

b) Positive acknowledgment timers should be temporarily stopped during any time interval
in which the responding entity is unable to transmit (i.e., between tracking passes) and
restarted when the responding entity’s ability to transmit is restored (i.e., the next
tracking pass starts). This activity is entailed in the ‘link state change’ procedures.

c) ACKs should be delivered to the UT layer immediately, as soon as they are created.
This might mean inserting them at the front (rather than the back) of the single
outbound PDU queue, or alternatively inserting them at the back of a separate, top-
priority queue reserved for ACK transmission.

7.5.4 ADDITIONAL COMMUNICATIONS CHANNEL

The separate queue for ACK transmission alluded to in 7.5.3 might also be considered an
‘additional communications channel’, a mechanism for immediate transmission of urgent
protocol control information.

It has been speculated that such a mechanism might be used for transmission of several types
of file directive PDUs. ACK PDUs are clearly urgent enough to warrant top-priority
transmission: significant delay in transmitting an ACK can result in premature timer
expiration and unnecessary retransmission, consuming scarce bandwidth. It is not yet clear
that any other file directive PDUs are similarly critical, so no consensus on this topic has
been reached within CCSDS Panel 1F.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-7 April 2007

7.5.5 FLOW LABELS

Flow label processing is identified in reference [1], but is left undefined. The JPL
implementation of CFDP incorporates a flow label algorithm that is intended to provide
highly flexible bandwidth allocation without requiring active management.

A JPL flow label is an integer in the range 0 through N inclusive, where N is some small
value. In testing to date we have used N = 3, with 0 as the default flow label for transactions
that omit the flow label TLV from transaction metadata.

For each remote CFDP entity, fdpd enqueues the PDUs of each file destined for that entity
onto one of N+1 FIFOs, depending on the flow label associated with the transaction. FIFO
‘N’ is designated the ‘priority’ queue for that entity Each of the other queues is assigned a
‘service level’, a number that indicates that queue’s allocation of total transmission
bandwidth in the absence of priority traffic.

Fdpo loops endlessly through the following algorithm to obtain from these N+1 FIFOs the
PDUs it sends to the remote entity that is currently in view:

a) If there are any PDUs currently in the priority FIFO, remove the first PDU from that
FIFO and transmit it.

b) Otherwise, if any of the non-priority FIFOs are non-empty:

1) Compute ‘service provided’ for each non-empty non-priority FIFO. For a given
FIFO, service provided is calculated as the FIFO’s service total (the total number
of bytes of data dequeued so far from this FIFO) divided by the service level
assigned to the FIFO.

2) Remove the first PDU from the FIFO for which the least service has been
provided, transmit it, and add its length to that FIFO’s service total.

c) Otherwise, wait until fdpd signals that PDUs have been placed in one or more of the
FIFOs.

The service levels assigned to non-priority FIFOs can be any numeric values, but the service
level assignment scheme we have used in testing enables a small optimization. If the service
level assigned to FIFO n (where 0 <= n < N) is 2**n, then you can compute service provided
for any FIFO by simply shifting its service total n bits to the right. If N = 3, the FIFOs are
configured as follows:

FIFO number Service level

0 2**0 = 1
1 2**1 = 2
2 2**2 = 4
3 (priority FIFO, service level n/a)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-8 April 2007

Assigning a given file the flow label N causes it to be appended to the priority FIFO, so that
it is transmitted after all previously enqueued priority transmissions (if any), but before all
non-priority transmissions. Assigning a given file a flow label less than N causes it to be
appended to the corresponding FIFO; it will be transmitted after all previously enqueued
transmissions with the same flow label, but possibly before previously enqueued
transmissions with different flow labels, depending on the lengths of the various FIFOs and
the service levels assigned to them. For example, if all non-priority traffic is assigned either
flow label 0 (with service level 1) or flow label 2 (with service level 4), and FIFOs 0 and 2
are both kept non-empty at all times, then transmissions assigned to flow 2 will be delivered
four times as rapidly as those assigned to flow 0; flow 2 will occupy 80% of the transmission
bandwidth, while flow 0 occupies the remaining 20%.

The effect of this scheme is to apportion transmission resources automatically to various
classes of traffic, without ever starving any class of traffic altogether, while still enabling an
emergency transmission to take temporary precedence over all other traffic when necessary.
No management is necessary, aside from the assignment of service levels to flows.

NOTE – When an unused FIFO begins to be used, the algorithm described above may
enable it to monopolize the transmission link for some time. (Its service total is
initially zero, so its computed service provided may remain less than that of all
other flows for a while, even if has a lower service level.) For this reason, an
additional computation is performed each time a PDU is dequeued from a non-
priority channel: if the difference between lowest and highest calculated values
of service provided is greater than some constant K times the current data
transmission rate (in bytes per second), then the service totals of all FIFOs are
reset to zero to resynchronize the algorithm automatically. K, a management
parameter, represents the maximum number of seconds the mission operator is
willing to risk letting one flow monopolize the transmission link.

7.5.6 TIMERS

Successful transmission of a PDU can be signified by an acknowledgment, but the only
reliable way to detect a possible failure in transmission is to wait for a timeout period to
expire prior to acknowledgment. Computation of these timeout periods in CFDP is
complicated by the fact that connectivity is discontinuous; reception of an acknowledgment
may be arbitrarily delayed, not only by planetary occultation but also by resource scheduling
decisions at both ends of the link. The effect of using an inaccurate timeout period to control
retransmission can be either unnecessary delay in data delivery (if the timeout period is too
long), or unnecessary retransmission traffic (if the timeout period is too short).

The JPL implementation of CFDP uses the following mechanism to detect timeout expiration
for EOF and Finished PDUs:

a) The total time consumed in a ‘round trip’ (transmission and reception of the original
PDU, followed by transmission and reception of the acknowledgment) has the
following components:

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-9 April 2007

1) Protocol processing time at sender and receiver.

2) Inbound queuing: delay at the receiver while the original PDU is in a reception
queue, and delay at the sender while the acknowledgment is in a reception queue.

3) Outbound queuing: delay at the sender while the original PDU is in a FIFO
waiting for transmission, and delay at the receiver while the acknowledgment is
in a FIFO waiting for transmission.

4) Round-trip light time: propagation delay at the speed of light, in both directions.

5) Delay due to loss of connectivity.

b) Processing time at each end is assumed to be negligible.

c) Inbound queuing delay is also assumed to be negligible, because processing speeds
are high compared to data transmission rates, even on small spacecraft.

d) Two mechanisms are used to make outbound queuing delay negligible:

1) At the sender, the timer for a given EOF or Finished PDU is not started until the
moment that fdpo delivers the PDU to the link layer for transmission. All
outbound queuing delay for the PDU has already been incurred at that point.

2) At the receiver, acknowledgment PDUs are always inserted at the front of the
priority FIFO to ensure that they are transmitted as soon as possible after
reception of the PDUs to which they respond. (Acknowledgment PDUs are small
and are sent infrequently, so the effect on the delivery of emergency traffic is
insignificant.)

e) We assume that one-way light time to the nearest second can always be known (e.g.,
provided by the MIB). So the initial value for each timer is simply twice the one-way
light time plus 1 second of margin to account for processing and queuing delays.

f) This leaves only one unknown, the additional round trip time introduced by loss of
connectivity. To account for this, we again rely on external link state cues.
Whenever loss of connectivity is signaled by a link state queue, we not only stop
fdpo, but also suspend the timers for all PDUs destined for the corresponding remote
entity; reacquiring link to the entity causes those timers to be resumed. There is no
need to try to estimate connectivity loss delays in advance, nor is there is a need for
CFDP itself to be aware of either the ephemerides or the tracking schedules of the
local entity, or of any remote entity.

In testing performed to date, this mechanism seems to trigger timeout-driven retransmission
without imposing either excessive retransmission traffic or excessive file delivery delay.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-10 April 2007

7.5.7 IGNORING LATE DATA

Unacknowledged-mode transactions always terminate on receipt of the EOF (No error) PDU.
Therefore any Metadata or file data PDU received after the EOF (No error) PDU for the
same transaction may be ignored.

7.5.8 TRANSACTION INDICATIONS

The Transaction.indication primitive that is issued to the user application upon initiation of a
transaction indicates the ID assigned to the new transaction. However, CFDP is not
constrained to block the submission of a Put.request primitive until a Transaction.indication
has been issued in response to the prior Put.request; nothing in the standard prevents the
submission of multiple Put.requests in quick succession without intervening reception of any
resulting Transaction.indications. In order for the user application to be able to associate a
transaction ID with the corresponding Put.request (and, implicitly, with the corresponding
file), an implementation-specific mechanism must be supplied.

One option is flow control, the single-threading of Put.request activity: after the CFDP
implementation receives a Put.request, it refuses to accept another one until it has delivered
the resulting Transaction.indication. While the CFDP standard does not require this
behavior, neither does it prohibit it.

Another option would be an implementation-specific transaction tag system, such as might
be provided in an application programming interface. For example, the function used to
submit a Put.request might return a ‘request ID’ number, which could subsequently be
inserted into the data object that is sent to the user application when the resulting
Transaction.indication is produced; the user application could link the Transaction.indication
to the corresponding Put.request by request ID.

7.6 SIMPLE ANALYSIS OF NAK RETRANSMISSION

NOTE – Contributed by R. J. Smith, British National Space Centre (BNSC)/Qinetiq.

The performance for CFDP can be gauged by making a few simple approximations using the
method outlined in this subsection. The most important measure is the probability of a PDU
being received.

It has been assumed that the link has a long delay, whereby the data rate is high relative to
the link delay; i.e., all data is transmitted and then, at some later time, all data is received. In
this case, there is no time overlap between transmission and reception, which is not
unreasonable, as data rates will increase and the speed of light will not.

The probability of PDU loss, qpl, is dependent on the number of bytes in the PDU, np, and the
probability of a bit error, pbe.

This confirms that risk of PDU loss increases with PDU length.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 7-11 April 2007

In a single transaction, most of the traffic consists of File Data PDUs, which are typically
significantly larger than other PDUs involved. The majority of non-File Data PDUs are
small, i.e., 20-200 bytes, and so are less prone to corruption. The only exception is the NAK
PDU, which may be large if there is a lot of data corruption, and it is the trigger for File Data
PDU retransmission.

Hence, the transaction simplifies to:

a) Send all File Data PDUs.

b) Return NAK PDU.

How big should File Data PDUs be? If they are too big, they are easy prey to bit errors,
meaning the whole PDU must be resent. If they are too small, then their headers become an
unacceptably large overhead. In this example, 1024 bytes has been taken as a reasonable
compromise.

How big are NAK PDUs? Their size is dependent on the File Data PDU length, nfd,
probability of bit error, pbe, and the file size, nfl.

The number of File Data PDUs, Nfd, is:

The probability that a File Data PDU is lost, qfd, is:

So an estimate of the number of NAKs, nn, is:

And the probability of a NAK PDU loss, qn, is:

How likely is a bit error? This depends on the mission and its environment. For the
purposes of this example, a typical link is assumed to lose 1 bit in 1010 (pbe=10-10), and a
poorly-designed link will drop 1 bit in 106 (pbe=10-6). These figures are based on current
space communications links with and without error correction.

Consider a 1Gb file (Nfd = 106):

pbe 10-10 10-8 10-6 10-5
qfe 8x10-7 8x10-5 8x10-3 8x10-2
nn ~1 80 8000 80000
qn 8x10-10 6x10-6 6x10-2 (1:16) 0.998 (~1)

Bit error probabilities of 10-8 and 10-5 have been added for context, as the trends are far from
linear, especially around 10-6. As the link quality decreases, the number of NAKs rises
sharply, and the probability of NAKs failing becomes almost certain (~1).

The example presented here provides a rough guide to performance for a typical transaction.
However, the analysis method has also been outlined to allow users to evaluate CFDP
performance with their own mission parameters.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-1 April 2007

8 IMPLEMENTATION REPORTS

8.1 OVERVIEW

8.1.1 This Section contains reports contributed by several different member Agencies
describing the CFDP implementations developed and tested by those Agencies. The first
such report was contributed by CNES, and it discussed their very early CFDP
implementation effort. That effort and report subsequently initiated, and in many ways
defined, the later activities of the other implementers and implementations. The CNES
report has become outdated and is therefore not included here, but this pioneering effort is
gratefully acknowledged.

8.1.2 A total of five independent implementations have been made as a part of the CFDP
development process. The creating organizations are BNSC/Qinetiq, European Space
Agency (ESA)/European Space Research and Technology Centre (ESTEC), NASA/GSFC,
NASA/JPL and NASDA/NEC. Each of the implementations has been tested thoroughly with
the other implementations, and each interoperates correctly with the others. In addition, an
operational implementation for the MESSENGER spacecraft has been developed by the
Applied Physics Laboratory (APL) of the Johns Hopkins University (JHU). Reports on each
of these implementations, except for that of JPL, are contained in this section.

8.1.3 A short description of the test program is contained in annex A of reference [3].

8.2 BNSC/QINETIQ IMPLEMENTATION REPORT

NOTE – Contributed by R. J. Smith, BNSC/Qinetiq.

8.2.1 SCOPE

This report provides a brief outline of the BNSC/Qinetiq implementation of CFDP,
highlighting the design approach taken and pitfalls encountered.

8.2.2 INTERFACES

There are three interfaces to CFDP, as follows:

a) primitives;

b) Protocol Data Units (PDU);

c) filing system.

Primitives are defined in the CFDP specification. They constitute the high-level application
interface to CFDP and fall into two categories, requests and indications. The former is a
command to the CFDP entity, and the latter provides feedback from it to the user application.

PDUs define the format of the packet data transmitted. They form the low-level interface of
the protocol and can be layered with other network protocols, e.g., transport, security or
packet layer. These are defined in reference [1].

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-2 April 2007

CFDP includes filestore operations (e.g., list directory, delete file). However, the precise
implementation of these is architecture-specific, so the code must interact with the local
operating system in order to perform these tasks.

8.2.3 ENTITY OVERVIEW

The BNSC implementation is broken into a number of components (figure 8-1), each with its
own responsibilities:

a) Individual transaction tasks handle the generation of appropriate responses for a
particular CFDP transaction, i.e., servicing primitive requests and incoming PDUs,
generation of primitive indications and outgoing PDUs, and tracking of the
transaction’s status.

b) PDU servers are small service routines responsible for receiving PDUs from their
transport layer and passing them to the daemon.

c) The daemon is the administrator for the entity and is responsible for monitoring
transactions’ status. It acts as a router for individual transaction tasks.

User App

Primitive
Indications

Primitive
Indications

Primitive
Requests

Primitive
Requests &
PDUs

PDUs

API

Daemon

Transaction

PDUs

Figure 8-1: Data Flow Between CFDP Entity Components

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-3 April 2007

8.2.4 DESIGN NOTES

8.2.4.1 VxWorks

A flight test opportunity arose on the Sparc Microprocessor Experiment (SMX-2) on
Qinetiq’s STRV-1d satellite. The satellite is a test bed for new space technologies, and the
experiment is designed to allow codes to be run in a space environment, with genuine
mission parameters.

SMX-2 employs a Sun Sparc-based chipset called the Embedded Real-Time Computer 32-
bit, ERC32. It is more powerful than the current generation of space-based CPUs and has
sufficient power to allow significant onboard processing. VxWorks was chosen as the real-
time embedded operating system for the experiment, as it is multitasking, scalable and
architecture-independent. It also has its own development tools which operate remotely on a
separate host machine, allowing the embedded code to be debugged in-situ on its target
system with minimal interference. This combination has several significant benefits:

a) Sophisticated software tools reduce development times.

b) In-situ development reduces risk of operational software failure.

c) A scalable operating system minimizes resource overheads.

d) Multitasking allows simple operational management.

e) Architecture-independence means code can be reused, giving greater stability through
heritage.

CFDP development has taken advantage of the VxWorks environment in precisely those
ways outlined above. The choice of operating system immediately led to certain design
decisions:

a) Multiple transactions are handled via the multitasking side of the operating system.

b) Operating system message queues are used to communicate between the daemon and
transaction tasks.

c) The C programming language was chosen, as a version of the GNU C cross-compiler
for the target system is included with VxWorks.

8.2.4.2 Transaction Task

Each transaction has a unique handling task at each CFDP entity involved (figure 8-2).
PDUs are identified by the entity daemon and passed to the relevant transaction task in the
order in which they arrive. These PDUs are then parsed, filtered and processed.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-4 April 2007

Transaction

Transaction parameters
PDU filter
Status flags

Timeout

pa_list
pdu_t pdu_t

pend_list

Files Files PDUs

Filestore

MIB

Entity
Parameters

Transport
Layer

Primitive
Indications

User Daemon

Status Primitive Requests &
Timestamped PDUs

Figure 8-2: Detailed Data Flow for Transaction Task

Incoming PDUs or primitive requests cause the task to:

a) update its status accordingly;

b) store received data;

c) generate an appropriate response, i.e., primitive indications and/or outgoing PDUs.

Outgoing PDUs are assembled in a data space, ready for transmission over the underlying
network. The current implementation can use a UDP or TCP transport layer, but the
modularity of the code also allows other protocols to be employed. In addition, PDUs can be
encapsulated in CCSDS Packets and SMP handshaking protocols for connection to the
Qinetiq Ground Segment.

The main loop of the transaction task is shown in a simplified form in figure 8-3. PDUs
which require positive acknowledgement are added to a list with an expiry time. This list is
maintained in time order and redundant entries are removed when a suitable
acknowledgement is received.

If no suitable response has been received prior to a positive acknowledgement entry expiring,
the original PDU is resent and a retry is counted. Once a prescribed number of retries have
occurred, fault handling procedures are engaged. An inactivity timeout is generated if no
PDUs have been received by a transaction for a prescribed period.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-5 April 2007

Quit?

Yes

Stop

Set delay until
next timeout

No

Timeout
expired?

Handle incoming
PDUs and

primitive requests

No

Start

Yes
Count retry

Retries
exhausted?

Resend PDU

No

Yes

Handle fault

Update delay until
next timeout

Figure 8-3: Simplified Transaction Task Algorithm

If an error is detected in the protocol, the fault handler determines the subsequent course of
action. This is determined from the entity’s MIB values, unless fault handler overrides have
been specified as part of the transaction.

During suspension, an incoming PDU is processed at a basic level to ensure that an
appropriate acknowledgement response is sent and to allow cancellation to be initiated if
required. Barring cancellation, the PDU is then simply stored in a list until resumption, when
it is parsed and processed by unsuspended entity.

The task must communicate with the daemon to inform it of significant changes in status,
which it does through the daemon’s message queue. It must also notify the user application
of status changes, via the primitive indications.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-6 April 2007

There are currently two types of transaction task implemented: sending (client) and
receiving (server). Each has a core routine with a common design framework to send or
receive a file respectively. The simplicity of this design means that the numerous state
changes can be accommodated with comparative ease, regardless of their order.

Local entity parameters are accessed via the MIB. This currently includes details of:

a) local entity identity;

b) receiving ports, i.e., PDU servers;

c) connections to other entities;

d) default characteristic parameters for transactions.

File access is performed directly by the transaction task on the filestore, either reading a file
for transmission or writing a received file.

Transaction tasks linger for a single activity timeout period beyond their transaction’s
termination in a zombie state. This ensures retransmission of acknowledged PDUs and easy
identification of residual transaction traffic, which may occur due to the nature of the
underlying space network.

8.2.4.3 Daemon

The daemon task handles the administration of CFDP transactions and scheduling of events,
as depicted in figure 8-4. It is responsible for spawning PDU server tasks, according to the
information contained in the MIB, and performing a syntax check on the MIB at start-up.

PDU servers extract PDUs from their transport layer, timestamp them and pass them to the
daemon. The PDUs are classified by the daemon according to whether they relate to a client
or server transaction, from their direction bit. They are then checked against the daemon’s
internal lists of known transaction identifiers.

Transactions in progress are listed as ‘active’, and are transferred to the ‘dead’ list when they
terminate. The dead list is a ring buffer which holds a given number of identifiers, so old
transactions are only remembered until their identifier is overwritten.

PDUs with unlisted identifiers are considered to be new transactions and cause the daemon to
spawn a new transaction task. During the inevitable delay while a new transaction task
initiates, all related PDUs are stored on a pending list within the daemon. These pending
PDUs are routed to the transaction task when it is ready to accept them.

Primitive requests are passed to the daemon and automatically routed to the appropriate
transaction task in a similar way to PDUs. All primitive indications are returned directly to
the user.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-7 April 2007

Daemon
actv_clnts

tid tid

dead_clnts

Primitive
Requests

Status

Primitive
Requests &
Timestamped
PDUs

actv_svrs
tid tid

dead_svrs

Transaction

Timestamped
PDUs

PDU Server

pdu_t

pend_clnts

pdu_t

pend_svrs

MIB

Entity
Parameters

User

Figure 8-4: Detailed Data Flow and Interfaces for Daemon

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-8 April 2007

8.2.5 CAPABILITIES MATRIX

CFDP Implementation Survey

Agency Name Submitted by
BNSC Qinetiq R Smith

General Implementation Information

Platform OS Language
Force Sparc 3CE VxWorks 5.4 C

Max. File Size Max. Segment Size Mechanism Used for Persistent Storage Other Persistent Storage Options

0xffffffff 0xffffffff RAM-based DOS FS None on development system

Underlying Communications Systems
CCSDS AOS VCDU CCSDS TM_TC CCSDS Prox_1 SCPS_NP UDP_IP Other

 X TCP_IP, Encapsulated
CCSDS TM_TC in IP

Packets, SMP (Qinetiq
Ground Segment)

1. CFDP Procedures

CRC

Proced.
Put

Proced.
Transaction

Start Proced.
PDU Forwarding

Proced.
Copy File
Proced.

Positive Ack.
Proced.

Faults
Proced.

Filestore
Proced.

X X X X X X X x

2. CFDP Protocol Classes

Unreliable
Transfer

Reliable
Transfer

Reliable Transfer by
Proxy

X X X

3. CFDP Protocol Options
End Type
Sender Receiver

X X

Put Modes
UnACK NAK

X X

Put NAK Modes
Immediate Deferred Prompted Asynchronous

X X X X

Put File Types
Bounded Unbounded

X X

Segmentation Control (Record Boundaries Respected)

Yes No
 X

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-9 April 2007

Put Primitives (Receiving End)

File_segment_receive.ind
X

Put Error Responses (Sending End)
Ignore Abandon Cancel Suspend

X X X X

Put Error Responses (Receiving End)

Ignore Abandon Cancel Suspend
X X X X

Put Actions
Cancel_PutAction_ Suspend_PutAction_

X X

Cancel Put Action (Receiving End)
Discard data Forward incomplete

X X

Put Report Modes (Sending End)
Prompted_Rpt_ Periodic

X On termination

File Store Options
Create File Delete File Rename File Append File Replace File Deny File Create Dir Remove Dir Deny Dir

X X X X X X X

Directory Operations

Directory Listing Request Directory Listing Response
X X

Release of Retransmission Buffers
Incremental and Immediate In total When ‘Finished’ Received

 X

4. Timers and Counters
Timers

NAK Retry
Timer

ACK Retry
Timer

Prompt _NAK_
Timer

Async NAK
Timer

Keep Alive
Timer

Prompt _Keep
Alive_ Timer

Inactivity
Timer

X X X X

Counters
NAK Retry Counter ACK Retry Counter

X X

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-10 April 2007

8.3 ESA/ESTEC IMPLEMENTATION REPORT

NOTE – Contributed by Massimiliano Ciccone, ESA/ESTEC.

8.3.1 INTRODUCTION

The goal of this implementation report is to describe the CFDP software implementation
within ESTEC through a detailed architectural design of the protocol’s kernel and an
overview of its interaction with the supporting software components, as well as a brief
description of the development environment.

8.3.2 IMPLEMENTATION STATUS

8.3.2.1 Overview

The ESTEC CFDP software coverage so far entails the implementation of the entire Core file
delivery capability, in both Reliable and Unreliable transfer mode, and the implementation of
the Extended and SFO procedures providing Store-and-Forward capabilities. This means
that the CFDP software has the capability to perform a single Point-to-Point file copy
operation between two CFDP entities; a Proxy file copy operation involving three CFDP
entities (two if used as a Get Request); and a file transfer via a single or multiple Serial
Waypoint(s).

As described in reference [1], the implemented classes are as follows:

a) Class 1: Unreliable Single Point-to-Point File Transfer;

b) Class 2: Reliable Single Point-to-Point File Transfer;

c) Class 3: Unreliable File Transfer via one or multiple Waypoint(s) in series;

d) Class 4: Reliable File Transfer via one or multiple Waypoint(s) in series.

8.3.2.2 CFDP Implementation Survey

Agency Name Submitted by
European Space Agency(ESA) ESTEC Massimilliano Ciccone

General Implementation Information
Platform OS Language

PC Windows NT/9X Object Pascal on Delphi

Max. File Size Max. Segment Size Mechanism Used for Persistent Storage Other Persistent Storage Options
FFFFFFFF 1024 bytes DOS File System

Underlying Communications Systems
CCSDS AOS VCDU CCSDS TM_TC CCSDS Prox_1 SCPS_NP UDP_IP Other

 X

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-11 April 2007

1. CFDP Procedures
Core Procedures

CRC
Proced.

Put
Proced.

Transaction
Start Proced.

PDU Forwarding
Proced.

Copy File
Proced.

Positive Ack.
Proced.

Faults
Proced.

Filestore
Proced.

X X X X X X X x

Extended Procedures
General
Req.s

File Data Relay
Proced.

Consignment
Notification

Proced.

PDU Relay
Proced.

Suspend/Resume
Propagation

Proced.

Deferred
Transmission

Proced/
X X X X X

2. CFDP Protocol Classes

Unreliable Transfer Reliable Transfer Reliable Transfer
by Proxy

Unreliable via
One Waypoint

Reliable via
One Waypoint

X X X X X

3. CFDP Protocol Options
End Type
Sender Receiver

X X

Put Modes
UnACK NAK

X X

Put NAK Modes
Immediate Deferred Prompted Asynchronous

X X X X

Put File Types
Bounded Unbounded

X X

Segmentation Control (Record Boundaries Respected)

Yes No
 X

Put Primitives (Receiving End)

File_segment_receive.ind
X

Put Error Responses (Sending End)
Ignore Abandon Cancel Suspend

X X X X

Put Error Responses (Receiving End)

Ignore Abandon Cancel Suspend
X X X X

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-12 April 2007

Put Actions
Cancel_PutAction_ Suspend_PutAction_

X X

Cancel Put Action (Receiving End)
Discard data Forward incomplete

X

Put Report Modes (Sending End)
Prompted_Rpt_ Periodic

X X

File Store Options
Create File Delete File Rename File Append File Replace File Deny File Create Dir Remove Dir Deny Dir

X X X X X X X X X

Release of Retransmission Buffers
Incremental and Immediate In Total When ‘Finished’ Received

 X

Put Report Modes
Prompted Periodic

X X

Extended Options

Entity Role
Original
Sender

Waypoin
t

Final
Receive

r
X X X

Number of Hops

One More Than
One

X X

Forwarding Method
Incremental

and
Immediate

In Total On
Complete

Custody Acquisition
X X

Timers and Counters

Timers
NAK Retry

Timer
ACK Retry

Timer
Prompt _NAK_

Timer
Async NAK

Timer
Keep Alive

Timer
Prompt _Keep Alive_

Timer
Inactivity

Timer
X X X X

Counters

NAK Retry Counter ACK Retry Counter
X X

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-13 April 2007

8.3.3 CFDP VS. OSI MODEL LAYERING CONTEXT

CFDP can be seen as a high-level protocol service designed to take advantage of the lower-
level protocols, relying on a minimal underlying data communication service , such as
CCSDS TC/TM, User Datagram Protocol (UDP)/Internet Protocol (IP), etc.

NOTE – Although the protocol can operate over a wide range of underlying
communication services, this recommendation assumes the use of CCSDS packet
delivery services (reference [1]), including:

a) CCSDS conventional packet telecommand;

b) CCSDS conventional packet telemetry;

c) CCSDS Advanced Orbiting Systems (AOS) Path service.

Even though CFDP has not been designed to comply strictly with any correspondent OSI
model layer, a rough ‘logical’ comparison can still be made.

CFDP’s correspondent group of layers can be found in the Application Service. It includes
portions of the OSI Session Layer, Presentation Layer and the Application Layer, and it also
extends into the space above the OSI stack itself, traditionally considered to be system
application space (i.e., for CFDP Extended procedures).

The ESTEC version so far works only over the connectionless UDP/IP underlying protocol
(see figure 8-5). The UDP was designed to provide a low network overhead mechanism for
transmitting data over the lower layers. Although it still provides packet handling and
sequencing services, UDP lacks a number of TCP’s more powerful connection-oriented
services, such as acknowledgement, flow control and packet reordering (nevertheless
provided by CFDP).

The main services offered by UDP can be summarized as follows:

a) segmenting of Data Streams (CFDP PDUs) into packets;

b) reconstruction of Data Streams from packets;

c) socket services (Winsock 2.0 creation and manipulation) for providing multiple
connections to ports on remote hosts.

The UDP Host-to-Host communication layer (figure 8-5) handles the services needed to
provide reliable communications functionality between network hosts.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-14 April 2007

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

OSI Layers Stack

Host-to-Host
Communication Layer

TCP UDP

Internet
Communications

Layer

Network Access
Layer

TCP/IP Layers Stack

Application
Service Layer

(CFDP)

Figure 8-5: Correspondence Between CFDP and OSI Layers

8.3.4 IMPLEMENTATION ENVIRONMENT AND CODING

8.3.4.1 Overview

ESTEC’s CFDP implementation utilized a multi-threading Windows application developed
under the Delphi 6 Borland Integrated Development Environment (IDE) using the Object
Pascal programming language.

All computers used were IBM PC-compatibles running Windows 9X/NT OS.

8.3.4.2 Introduction to Object-Oriented Programming (OOP)

OOP is a programming paradigm that uses discrete objects (an instance of a Class),
containing both data and code, as application building blocks. Although the OOP paradigm
does not necessarily lend itself to easier-to-write code, the result of using OOP traditionally
has been easy-to-maintain code. Having an object’s data and code together simplifies the
process of searching for bugs, fixing them with minimal effect on other objects, and
improving the program one part at time. Traditionally, an OOP language contains
implementations of at least three OOP concepts, as follows:

a) Encapsulation: Deals with combining related data fields and hiding the
implementation details. The advantages of the encapsulation include modularity and
isolation of code from other code.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-15 April 2007

b) Inheritance: The capability to create new objects that maintain the properties and
behavior of ancestor objects. This concept enables the creation of object hierarchies,
such as a Visual Component Library (VCL), first creating generic objects and then
creating more specific descendants of those objects that have more narrow
functionality. The advantage of inheritance is the sharing of common code.

c) Polymorphism: Literally, polymorphism means ‘many shapes’. Calls to methods of
an object variable will call code appropriate to whatever instance is actually in the
variable.

An Object is comprised of:

a) Fields: Data variables contained within objects.

b) Methods: The name of procedures and functions belonging to an object. Methods are
those things that give an object behavior rather than just data.

c) Properties: A property is an entity that acts as an access interface to the data and
code contained within an object. Properties insulate the end user from the
implementation details of an object.

8.3.5 CFDP SOFTWARE FUNCTIONAL CONTEXT

Before starting to describe the implemented CFDP Component Software, it is worthwhile to
give an overview of the complete CFDP Software Package developed within ESTEC, which
encompasses three software modules:

a) the CFDP User Software;

b) the CFDP Component, representing the CFDP protocol behavior;

c) the CFDP Packet Service Component (CPSC), representing the interface to the UT
Layer.

As shown in figures 8-6 and 8-7, the CFDP Component interacts with both the CFDP User
Software and the CPSC, allowing a user to fully configure and operate the protocol over a
‘selectable’ set of conceptual underlying communication systems (UDP, CCSDS, etc.).

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-16 April 2007

Figure 8-6: CFDP Software Functional Diagram

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

C
C

SD
S R

EPO
R

T C
O

N
C

ER
N

IN
G

 TH
E C

C
SD

S FILE D
ELIV

ER
Y

 PR
O

TO
C

O
L (C

FD
P)

C
C

SD
S 720.2-G

-3
Page 8-17

A
pril 2007

Figure 8-7: CFDP Software Elements (Components) Diagram and Packet Flow

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-18 April 2007

8.3.6 CFDP/UT PACKET ROUTING

It is important to describe the different routing stages occurring in an end-to-end CFDP
communication. First, the CFDP software performs packet routing ‘internally’ (at CFDP
level) by resolving the CFDP address mapping from PDU’s Destination CFDP ID to Next
hop CFDP ID by means of the loaded CFDP MIB file. See figure 8-8.

Figure 8-8: CFDP/UT Packet Routing

An example of the CFDP MIB Address table is as follows:

 cfdp03: 05 #CFDP Server (Waypoint)

This sample line shows a typical CFDP routing. It means that, in case the PDU final
destination is the CFDP entity 03, the packet will be sent to CFDP entity 05 (next hop), since
there is not a direct link to entity 03.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-19 April 2007

At this stage, the CFDP PDU is ready to be released over the underlying communication
layer. Therefore, the information provided by CFDP to the Unit Data Transfer (UT) Layer
Interface is:

CFDPSend (CFDP_PDU (final CFDP Destination ID in the Header),
Next_Hop_CFDP_ID)

The UT software interface (CPSC) itself will then perform the translation between the passed
CFDP ID (Next_Hop_CFDP_ID) and the corresponding UT Layer address (i.e., physical
network address) by using its own MIB look-up capability.

The resulting UT Layer address may be an Internet address, radio device buffer, APID,
virtual channel number, or other implementation-specific mechanism.

An example of a UT layer MIB Address table could be:

cfdp05: 128.244.47.100/6769 #APL SRS-Protolab2 PC

Therefore, the UT Service Access Point for CFDP will be:

UNITDATA.Request (UT_SDU(CFDP PDU), Destination UT Address (i.e., IP
Address))

The CPSC now has enough information for relaying the CFDP packet to the underlying UT
layer.

8.3.7 THE CFDP PACKET SERVICE SOFTWARE COMPONENT

The Delphi CFDP Packet Service Component (CPSC) is a software module specially
developed to support packet delivery, interacting with both the CFDP User Software and the
CFDP Entity (another Delphi component), in a way that can be fully configured by the user
software to operate over a set of various underlying communication systems (UDP, CCSDS,
etc.). (See figure 8-6 for functional context.) In other words, it is in charge of handling all
the procedures related to CFDP PDUs sending and receiving over the underlying protocol
layer. The only underlying communication protocol interface implemented for the CFDP
Packet Service component so far is UDP/IP (see figure 8-9).

The UDP was designed to provide a low-network overhead mechanism for transmitting data
over the lower layers. Although it still provides packet handling and sequencing services,
UDP lacks a number of TCP’s more powerful connection-oriented services, such as
acknowledgement, flow control and packet reordering (nevertheless provided by CFDP).
The main services offered by UDP can be summarized as follows:

a) segmenting of Data Streams (CFDP PDUs) into packets;

b) reconstruction of Data Streams from packets.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-20 April 2007

Figure 8-9: CFDP Packet Encapsulation

Socket services (Winsock 2.0 creation and manipulation) are used to provide multiple
connections to ports on remote hosts.

The CFDP UT Layer Interface can be associated with the CFDP Packet Service component
software linked to the CFDP Entity Component.

The error handling method for such an interface is the one related to the selected underlying
layer (i.e., UDP delivery and duplicate protection are not guaranteed).

So far, no ‘local’ Flow Congestion Control is performed within the UT interface, but it will
be implemented as soon as possible as a ‘bit rate control mechanism’ inside the CFDP
Packet Service component’s sending module. This mechanism will limit the maximum
packet flow over the underlying network, and will be useful to measure the CFDP bandwidth
efficiency through the total transaction’s bandwidth and transfer time.

8.3.8 SOFTWARE ARCHITECTURAL DESIGN (SAD)

8.3.8.1 Overview

ESTEC software implementation of the protocol can be subdivided into three different
‘functional modules’:

a) Core procedures;

b) Extended procedures;

c) SFO procedures.

The software does not respond to any onboard requirement and is strictly ground-oriented.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-21 April 2007

The ESTEC prototype implements the CFDP Entity as a Delphi Component.

As a result of the object-oriented programming technique, classes defined and organized in
software units comprise the CFDP Software. The basic class defining the CFDP Software is
called TCFDPCore. Furthermore, because the CFDP Extended procedures supplement and
rely on the capabilities provided by the CFDP Core procedures, a second class called
TCFDPExtended has been implemented by deriving it directly from the TCFDPCore class.
It is worth noting that the OOP technique for re-using code perfectly matched the need for a
functional software module providing all CFDP Core services (TCFDPCore class) to the
new CFDP Extended component to be implemented (TCFDPExtended class).

This SAD is focused on the description of CFDP Component software for Core procedures,
and explains what hides inside the CFDP Component from an implementer point of view.
Moreover, since the entire CFDP code is running in a Multithread context, additional
diagrams representing threads’ function and interaction, as well as CFDP packets In/Out
flow, are included. This should ease future maintenance of the code and assist with
determining where to add new features to the component’s capability.

8.3.8.2 The Delphi CFDP Component

8.3.8.2.1 Component Description

The CFDP component can be defined as a reusable stand-alone software module representing
the CFDP behavior (Core/Extended Procedures), with a well-defined interface to the outside
world defined by the public or published methods and properties of TCFDPCore and
TCFDPExtended Classes.

Within the Delphi developing environment, a CFDP Delphi Component can be easily
dragged and dropped into a form acting as the CFDP User Software.

In order to work, the CFDP component needs to be linked to an application (i.e., the CFDP
User Software).

Once it is linked to the linked CFDP component, the CFDP User software will be able to
submit protocol Requests and receive protocol Indications back. In other words, the CFDP
component receives stimulus from the User Software and reacts accordingly, raising events
when a certain state is reached. From the CFDP point of view, received stimulus can be
associated with all the CFDP Request Service Primitives and raised events can be associated
with all of the CFDP Indication Service Primitives (see figure 8-6).

When the CFDP Component raises an event, the connected CFDP User Software shall be
able to handle it and to undertake all appropriate actions (i.e., display an info box to the user
or update a log window). This can be done by linking an event handler procedure
implemented by the User Software to each Component’s event.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-22 April 2007

It is clear that a Delphi component can be used only from inside a Delphi IDE. For this
reason, an ACTIVE X version of this component is under development. The Active X
standard is a technology, built on top of Common Object Model (COM) technology (COM-
Based) that allows the component to be ‘Language Independent’. That is, an Active X
component can be potentially linked to user software developed under any development
environment able to import Active X objects (e.g., Visual C++, Visual Basic, etc.).

The COM technology defines an API and a binary standard for communication between
objects (i.e., a CFDP Entity) that is independent of any particular programming language or
(in theory) platform.

A COM object consists of one or more ‘interfaces’ which are essentially tables of functions
associated with that object. In this way, a COM mechanism handles all the intricacies of
calling functions across process and even machine boundaries, which makes it possible to
access an object (CFDP Entity) located on machine A from an application (User Software)
running on machine B.

This inter-machine communication method, also called Distributed COM (DCOM)
technology, is only mentioned to point out the possibility of having remote user software
interacting with the CFDP component across machine boundaries.

8.3.8.2.2 Instructions for Use of the Component

Once the CFDP User Software ‘owns’ a CFDP Component object (i.e., either a CFDP
Component has been dragged and dropped on the User Interface form at design-time or an
instance of the TCFDP Class has been created at run-time), the creation method will perform
all the initialization procedures of a CFDP Entity. The next step is to link all of the CFDP
component’s Events to appropriate event handlers defined by the User Software. From now
on the CFDP Component is ready to interact with the User Software (i.e., being set, receiving
stimulus and raising events).

In OOP, Public and Published are used to specify visibility of a certain method or property
belonging to a class. The Public/Published methods and properties of the TCFDPExtended
and TCFDPCore Classes define the interface of the related component to the outside world
(CFDP User Software and CPSC).

The Public methods and properties can be accessed only at run-time, while the Published
properties (not methods) are also accessible from inside the IDE at design-time. This makes
it possible to set values for the component’s Published properties before running the
application (i.e., User Interface software) that makes use of the component.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-23 April 2007

8.3.8.2.3 The CFDP Log Window

During the initialization phase, the CFDP Component automatically creates a Log Window to
display its status and the run-time information for all of the file delivery Transactions
handled by the current CFDP Entity (types of PDUs sent and received, error log, etc.). See
figure 8-10.

Figure 8-10: CFDP Component’s Log Window

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-24 April 2007

The CFDP Log window is divided into three parts:

a) General Log (upper part);

b) Receiving Transactions Log (left side);

c) Sending Transaction Log (right side).

The General Log is used for displaying all of the entity’s generic messages such as entity
status, capabilities and settings values, as well as messages on the transaction’s start and end,
timers, etc.

The two remaining parts are more Transaction-oriented, displaying details on each CFDP
transmission (e.g., received or sent packet, timeouts and error messages) for both Sending
and file Receiving transactions. (Note that a transaction is here defined as Sending when it is
initiated by the ‘local’ CFDP entity.) On the contrary, a transaction is defined as Receiving
when it is initiated by a ‘remote’ CFDP entity and it involves the local CFDP entity either as
an intermediate waypoint or a final destination.

The bottom part of the Log window displays:

a) the total number of PDUs Generated by the Local CFDP Entity (but not yet released
to the UT layer);

b) the total number of PDUs Buffered in the Output Buffers and waiting to be released to
the UT layer (a conceptual underlying communication system) at the first
transmission opportunity;

c) the total number of PDUs actually Released by the Local CFDP Entity to the UT
Layer;

d) the total number of PDUs Received at the Local CFDP Entity.

By right clicking on the Log window, a pop-up menu will appear. It allows the user to clear
or save a selected log section. Note that each Log section is cleaned every 350 lines, and a
file containing the section dump is automatically saved with the name format <yy_mm_dd
hh_mm_ss.txt> (current date and time) in the directory ‘…\CFDP_Temp\Log\’ of the current
Drive. Furthermore, when the CFDP application is closed, it also saves a file containing the
dump of all log sections. See figure 8-11 for the log files name format.

The CFDP packets input flow and threads interaction is diagrammed in figure 8-12. The
CFDP packets output flow is diagrammed in figure 8-13.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-25 April 2007

Figure 8-11: Log Files Name Format

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-26 April 2007

Figure 8-12: CFDP Packets Input Flow Diagram and Threads Interaction

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-27 April 2007

Figure 8-13: CFDP Packets Output Flow Diagram

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-28 April 2007

8.3.8.2.4 The CFDP Component’s Messages Window

To fully understand the output flow of CFDP packets inside the CFDP software component,
a brief description on how such a component handles all the internal Windows messages is
necessary.

In order to perform proper actions upon the occurrence of a certain event, due to the multi-
threading nature of the CFDP component, user-defined Windows messages are sent from all
the secondary threads to a component’s internal window. In so doing, the messages can be
processed within the component’s main thread, avoiding violation of shared resources.
Hence, the CFDP internal window can be seen as a non-visible ‘housekeeping’ window
performing all of the component’s message-handling procedures.

The message types handled by this form are as follows:

a) CFDP_ExtendedMESSAGE;

b) CFDP_ErrorMESSAGE;

c) CFDP_TimerMESSAGE.

8.3.8.2.5 An Outgoing PDU Through CFDP

Every time a scheduled CFDP transaction needs to send a PDU, the Generate_PDU method
is called at transaction level from both the scheduler threads (Sending and Receiving
transactions). This method fulfils the following tasks:

a) retrieves the receiving host’s CFDP network address (Next Hop ID);

b) extracts the outgoing CFDP packet from the Transaction object;

c) retrieves the action to perform on local timers (enable/disable) upon ‘releasing’ over
the underlying communication layer;

d) performs the CRC calculation on the outgoing PDU (if necessary);

e) stores the PDU and all the related information in a memory structure (Transaction ID,
Destination ID, Packet number, etc.);

f) posts a WM_MSG_SendPacket message containing the address of the newly allocated
memory structure to the Sender thread’s messages queue and returns.

All of the messages posted to a thread are buffered in the thread’s message queue before the
thread itself processes them. The Sender thread main code (Execute method) is a loop which
is continuously polling for WM_Msg_SendPacket messages. When it is found and
processed, if the Destination CFDP entity is currently ‘In view’, the packet is finally released
on the underlying communication layer via the UT layer interface, and the next pending
message is processed (unless the Flow Control mechanism is enabled). The CFDP sender
thread issues an OnRadiatePDU event which in turn issues an OnSendCFDPPacket from the
CFDP component.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-29 April 2007

If the Destination CFDP entity is ‘not in view’, then the packet is buffered in output queues
(internal to CFDP) made by persistent FIFO linked lists, and it will wait for the next link
acquisition towards that particular destination CFDP ID. The FIFO lists grow while links are
inactive and shrink while they are active, but this is transparent to applications using the
CFDP Component.

An Output Buffer is created for each ‘new’ CFDP destination entity involved in a file
delivery transaction. In this case, destination entity means the final destination of a FDU if
no waypoints are present along the communication path; otherwise it means the next hop
CFDP ID towards the final destination.

Thus, the Output Buffer contains outgoing packets belonging to both Sending and Receiving
transactions handled by the local CFDP entity. The CFDP component is also responsible for
keeping track of all the new established, lost, acquired or dismissed links towards different
destinations. This task is carried on by the CFDP component itself in conjunction with the
CFDP User Software (which issues the Link Lost/Acquired signals during transactions
lifetime), as follows.

a) LinkLost (Remote_CFDP_ID);

b) LinkAcquired (Remote_CFDP_ID).

Obviously, this implies that such knowledge already exists outside of CFDP (at the CFDP
User Software level). Both Core and Extended procedures will benefit from such a Deferred
Transmission mechanism, giving the CFDP a way to ‘drive’ the starting and stopping of PDU
transmission and schedule the file delivery transactions according to an arbitrary priority
scheme.

The use of output buffers can be disabled from the CFDP User Software (both during design
and run time) in case the CFDP component is running on a storage-constrained entity.
Unfortunately, this implies the loss of all the packets currently stored in the outgoing FIFO
linked lists (see figure 8-14). The maximum number of PDUs that a single list can buffer can
also be set. Therefore, a full list will discard any further PDU that needs to be buffered.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-30 April 2007

Figure 8-14: Enabling Output Buffers with User Software

8.3.8.2.6 Advantages of Deferred Transmission

By relying on link state output queues to control the operation of File Delivery Protocol
output, we can accommodate occultation and other interruptions in connectivity simply and
efficiently: when the link is lost, the CFDP User Software simply commands CFDP to stop
‘all’ transmission of data towards the opposite end point of the link’ by internally buffering
all of the outgoing PDUs for that specific destination. Furthermore, the joined use of
Transmission/Reception Opportunity CFDP Procedures provides greater flexibility and
efficiency by allowing ‘freezing’ of all transactions involved in the link loss.

The freezing of transmission/reception for a transaction has the same effects as suspension of
that transaction by the sending/receiving entity, except that no Suspended. Indication is
issued and the transaction is not considered suspended.

Given that the same action is performed at the other end of the lost link, this implementation
of deferred transmission incurs far less protocol overhead than using the ‘remote’ Suspend
and Resume operations to control suspension and resumption of communication. Remote
Suspend and Resume procedures are protocol elements, requiring a co-operative interchange
of data between entities.

Deferred transmission is entirely local; no PDUs are issued or received to affect it. Because
deferred transmission is an entirely local mechanism, it is unaffected by delay due to the
distance between the participating entities. Moreover, there is no chance of incomplete
suspension/resumption due to loss of PDUs. Remote Suspend and Resume procedures are
transaction-specific. This means that a link cut between any pair of CFDP entities would
require the reliable transmission of Suspend messages for every transaction currently in
progress between them, and resumption of transmission would require the reverse. In
contrast, the deferred transmission mechanism is atomic and comprehensive.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-31 April 2007

8.3.8.2.7 Flow Control integration in CFDP

In addition to the need for handling loss of link visibility, a mechanism for throttling CFDP
into sending no faster than the receiver can handle the traffic was also found to be necessary.
Thus, an efficient Flow Control mechanism in which the receiver (UT Layer interface)
provides feedback to the sender (i.e., CFDP component) was implemented.

Assuming that the communication channel is error free, and in case the used link has an
uneven data throughput (i.e., Packet Telecommand link), a good solution has been found in
the Stop-and-wait flow control protocol. It is a mechanism whereby the sender sends one
frame and then waits for an acknowledgment before proceeding.

This behavior could also have been accomplished by using the LinkLost() and
LinkAcquired() procedures available at the CFDP component, but a dedicated entry point has
been implemented in order to drive flow control procedures in a more easy and efficient way.

For this purpose, the CFDP component has been provided with an
UT_ReadyForTransmission() method that can be used by a software module located at the
UT service layer interface (i.e., the CFDP Packet Service Component) in order to stimulate
the CFDP component to ‘release’ PDUs whenever the receiving side is ready.

When this method is invoked, the status of an internal auto-reset CFDP event object is
signaled, allowing the CFDP Sender thread to resume its execution, release a CFDP PDU,
and suspend execution again until the next stimulus.

This capability would spare the CFDP component the use of an ‘embedded’ Flow Control
algorithm. In other words, the network packets received by the CFDP component will still
be pure CFDP PDUs, since the flow control header has been read, interpreted and filtered by
an ‘external’ interface software module in charge of driving the CFDP packets flow via the
available functions (i.e., UT_ReadyForTransmission method). In this way the Flow Control
mechanism result is transparent to the CFDP component itself.

8.3.8.2.8 Transaction Priority Considerations

The PDUs pending in the sender thread’s message queue are already stored in a PRIORITY
order, since they have been generated by the Receiving or Sending Transactions
SCHEDULERS according to their defined SCHEDULING ALGORITHM.

If such PDUs are extracted and buffered because of a link visibility cut, then the previously
assigned priority is lost. This happens because the ordering key for buffered PDUs is no
longer their Transaction ID but, instead, their Destination ID. Therefore, all the PDUs stored
in an Output Buffer belong to transactions of different nature and IDs, but are all destined for
the same remote host.

In other words, a new kind of priority is established between buffered outgoing PDUs:

 The Output Buffer CREATION ORDER.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-32 April 2007

In practice, a PDU destined to a Destination ID that was out-of-view in a moment X will be
released from the from the output buffer queue (as soon as the link is acquired again) before
the PDUs destined to a Destination ID that was out-of-view in a moment X+Y.

NOTE – CFDP does not allow assigning a priority to a single PDU. On the other hand, a
priority can be assigned to an FDU (functional concatenation of data and related
metadata) by means of the Flow Label TLV message of the protocol.

8.3.8.2.9 Transaction Scheduling Algorithm

Currently, the scheduling algorithms adopted by the Receiving Transactions Scheduler and
the Sending Transaction Scheduler are quite similar, with only a few minor differences.

Every transaction (Sending or Receiving) is initially assigned a Priority Level (0-255) on
creation, but the priority may also be modified at run time with the User Software.

The scheduling algorithm takes into consideration the critical situation of the transaction
entering the sending or receiving ‘close loop’.

In case this loop is entered, it will be interrupted for scheduling as follows:

a) A Sending/Receiving transaction that enters an ERROR state.

b) A Sending transaction that needs to REISSUE an EOF PDU or a Receiving
transaction that needs to REISSUE a:

1) Finished PDU;

2) Keep Alive PDU;

3) NAck PDU.

c) A NEWLY CREATED Sending transaction.

If there is a group of two or more Sending/Receiving transactions claiming to be scheduled
for the same above-mentioned events, or if the Sending/Receiving transaction is not in a
sending/receiving close loop, then the NEXT Sending/Receiving transaction will be
scheduled from the considered group according to the transaction’s Priority Level and
Creation Time. That is if two or more transactions have the same Priority Level, then the
earliest created is scheduled.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-33 April 2007

8.4 JHU/APL IMPLEMENTATION REPORT

NOTE – Contributed by Christopher J. Krupiarz, The Johns Hopkins University (JHU)
Applied Physics Laboratory (APL).

8.4.1 INTRODUCTION

This report describes the flight software implementation of CFDP on the MErcury, Surface,
Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.
MESSENGER is a NASA Discovery mission to study the planet Mercury. CFDP will be
used on MESSENGER to downlink science data, images, and telemetry packets.

8.4.2 SOFTWARE ENVIRONMENT

The software is written in the C programming language and runs on the VxWorks Real-Time
Operating System. The flight hardware consists of a RAD6000 processor running at 25MHz,
8 Megabytes of RAM, and 4 Megabytes of storage for the complete code image. The
processor runs both Command and Data Handling (C&DH), Guidance and Control (G&C),
as well as various other processes including image compression. Due to the high processor
load and memory constraints, it was determined that a custom implementation was to be
developed for the flight system in order to have greater control over system resources. On
the ground system, an implementation provided by NASA/JPL was integrated into the
current JHU/APL architecture, thus reducing the need for further core CFDP development
within the ground software.

8.4.3 SOFTWARE OVERVIEW

8.4.3.1 CFDP Selections

The software running on the flight system implements a subset of the CFDP protocol.
Acknowledged Mode was selected to ensure receipt of the files, and Deferred NAKs are used
due to the large one-way light time between Mercury and Earth. MESSENGER’s use of
CFDP was also simplified in several ways to reduce the impact on margins for CPU and
memory usage, as follows:

a) File transfer: Files are transferred only one way, from the spacecraft to the ground.
Previous proven software developed by JHU/APL is used to upload data directly into
memory in place of the uploading of files.

b) File system operations: File system operations, such as move and delete, are
performed via native flight software commands as opposed to within CFDP.

c) Initiation of file transfers: File transfers on the flight side are initiated automatically
or through commanding outside of the CFDP framework. Although CFDP provides
the capability to initiate these transactions from the ground through a proxy service,
MESSENGER file transfers from the ground are started via native flight software
commands that instruct the CFDP flight software to downlink files.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-34 April 2007

The UT layer for MESSENGER consists of CCSDS telecommands and CCSDS transfer
frames. Incoming PDUs are packaged and treated as a command by the flight system and are
therefore processed through the command execute thread. Outgoing PDUs are sent on a
separate Virtual Channel to the ground software.

8.4.3.2 Software Architecture

8.4.3.2.1 Overview

The MESSENGER flight software implementation consists of a primary store of information
called the transaction table, lists maintained for timers and files, and two processing
components, a 1-Hz CFDP task and CFDP methods. The 1-Hz task operates independently,
while the methods are called by two other tasks within the MESSENGER flight software
architecture.

8.4.3.2.2 MESSENGER Transaction Table

The transaction table stores information on all of the current transactions. See table 8-1.

Table 8-1: MESSENGER Transaction Table

Field Size (in bits) Purpose

id 32 CFDP Transaction Sequence Number

transaction_timer 32 Timer for the entire transaction

eof_timer 32 Timer for the EOF ACK

file_size 32 Size of this file

current_location 32 The location within the file to start the next PDU

nak_start 32 Start of next NAK block

nak_end 32 End of next NAK block

checksum 32 Checksum for the file (created as PDUs are being
generated)

next_timer 32 Next timer in transaction timer list

next_eof 32 Next timer in EOF timer list

nak_links 64 Links to the previous and next NAKs

fdu_links 64 Links to previous and next FDUs

eof_count 8 Count of EOFs sent

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-35 April 2007

Table 8-1. MESSENGER Transaction Table (continued)

Field Size (in bits) Purpose

filename 480 Name of the file to downlink (MESSENGER flight and
ground file systems mirror each other, thus the filename
for the ground and flight will be the same)

post_action 2 Action to perform after transaction (move to a trash
directory or delete)

state 1 Current PDU state of transaction (indicates whether to
create an FDU or a NAK)

priority 1 High or low priority

metadata_sent 1 Indicates whether metadata has been sent

timer_active 1 Indicates whether the EOF timer is active and therefore
decremented

naking 1 Indicates whether the entry is in the NAK state

eof_sent 1 Indicates whether an EOF has been sent

Given the distance to Mercury and the average file size, it is estimated that at any one time,
six hundred transactions may be open. These open transactions are defined as those
currently being transferred or those awaiting information from the ground in the form of
NAKs, EOF ACKs, or Finished PDUs.

8.4.3.2.3 MESSENGER Lists

The flight software maintains four lists. Two are for timers, the other two are for the
processing of PDUs. The lists are as follows:

a) Transaction list: This is a timer list for the overall transaction time. When a file is
added to the transaction table, an entry is made in this list.

b) EOF list: This is a timer list used to time the wait for an EOF ACK from the ground.
When an EOF is sent, an entry is made in this list.

c) FDU list: This is a prioritized list from which to choose the next transaction from
which to send a PDU.

d) NAK list: This is a prioritized list from which to choose the next transaction from
which to send a PDU derived from a NAK request.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-36 April 2007

8.4.3.2.4 MESSENGER Tasks

8.4.3.2.4.1 Overview

The MESSENGER flight software consists of numerous VxWorks tasks. The tasks
responsible for CFDP are the Command Executive, Playback, and CFDP.

8.4.3.2.4.2 Command Executive Task

Uplinked PDUs are processed within the standard command processing architecture. When a
telecommand packet is received an opcode, which determines where the command is routed,
is extracted from the data. In the case of CFDP, the opcode indicates a method should be
executed which will process the given PDU. Since the flight software is only a CFDP
sender, the PDUs received will be limited to NAKs, EOF ACKs, and Finished indicators.
They are processed as follows:

a) NAK: Because a single NAK can contain multiple retransmission requests, the NAK
is divided into potentially several entries in the appropriate internal NAK priority
queue. The information contained in each entry consists of the Transaction ID and
the start and stop offsets for the NAK. These are processed later by the Playback
Task through a method call.

b) EOF ACK: The timer is stopped in the transaction table for the Transaction ID in the
ACK.

c) Finished: A Finished ACK is placed on the outbound PDU queue for this transaction
and the transaction is removed.

The Command Executive task may also receive commands from the ground to start a new
file downlinking, to cancel a current transaction, and to update the timeout values.
Commands exist to process file system operations, although these are handled outside of the
CFDP protocol for MESSENGER. File system ops include a directory listing, delete, create
directory, move, and copy. Commands which may take an extended amount of time to
complete are executed outside the command execute thread by the CFDP 1-Hz task.

8.4.3.2.4.3 Playback Task

The Playback Task is the primary user of CFDP. This task autonomously downlinks files
based upon their location in a priority based directory structure. It checks the state of CFDP
to determine whether a file is currently downlinking, and, if one is not, it initiates a new file
transfer. The CFDP method adds the requested file to the transaction table at this point. As
space becomes available in the downlink buffers, the Playback Task requests PDUs from
CFDP, which are selected from one of several sources. EOF and Finished ACKs are given
priority. If none is available, the NAK queue is checked for retransmission requests. If there
are no NAKs to process, CFDP will provide the next file segment from the file currently
being processed.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-37 April 2007

8.4.3.2.4.4 CFDP Task

The 1-Hz CFDP task is responsible for file system operations and for decrementing the
timers for EOF PDUs. The CFDP task checks whether any file system commands are
waiting to be executed and executes them. Using a resolution of one minute, it also
decrements the EOF ACK timers and transaction timers if the CFDP is in the active state.
When it determines that the wait for an EOF ACK has timed out, it builds another EOF PDU
and places it on the outbound PDU queue for future processing. If a transaction time out
occurs, it cancels the transaction.

8.4.4 COMMENTS AND LESSONS LEARNED

8.4.4.1 Suspend and Resume

Originally the flight code was designed to allow for the suspension and resumption of
transactions. However, after further study it was concluded that the feasibility of managing
transactions with a large round trip light time was not practical.

8.4.4.2 Downlinking

MESSENGER data will be downlinked during 8-hour passes. In lieu of suspend and resume,
the timers on the ground and flight side are turned off at the end of a pass and turned back on
at the beginning of a pass. Since EOF ACKs and Finished PDUs only result in changes to
the transaction table, they are processed continuously. However, PDUs destined for the
ground are only created when the Playback task requests the information.

8.4.4.3 Timer Lists

Timers are maintained using a delta list as described in reference [5].

8.4.4.4 Test Harness

Included in the NASA/JPL CFDP implementation is a test harness that allows for the
operation of CFDP with UDP as the UT. Through this method, it was possible to test the
flight system with the JPL code prior to completion of the actual UT software to be used
during the mission. This reduced the degree of integration of issues and ensured that the
flight software was properly following the protocol.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-38 April 2007

8.4.4.5 System Integration and Portability

This implementation of CFDP is not standalone software as it is integrated into the two tasks
within the MESSENGER flight software. As JHU/APL uses similar architectures on its
missions, it is readily adaptable to future inter-lab missions, although its use outside of
JHU/APL would require a larger degree of modification. As stated previously, this was a
trade-off for reducing system usage. However, as seen with the treatment of the NASA/JPL
software on the ground as a ‘black box’, a standalone version would promote more reuse on
an interagency level.

8.4.4.6 Applied Physics Laboratory/Johns Hopkins University MESSENGER
Spacecraft Lessons Learned (21 October2004)

MESSENGER is a Discovery class mission that launched on August 3rd of this year and is
destined for a one year orbit around the planet Mercury in 2011. This will be preceded by
two flybys of Venus and three flybys of Mercury as well as a flyby Earth one year after
launch. The spacecraft’s primary computer consists of a RAD6000 running at 25MHz, with
8 Megabytes of RAM, and 4 Megabytes of storage for duplicate code images. Both
Command and Data Handling (C&DH) and Guidance and Control (G&C) run on the same
computer. The Solid State Recorder (SSR) consists of 8 Gigabits of SRAM. The VxWorks
operating system is used including the file system capabilities of the OS. Files on
MESSENGER consist of both science data as well as housekeeping data and CFDP is used
one-way for downlinking these files from the spacecraft. All files are sent using
Acknowledged Mode with Deferred NAKs. Due to the computing constraints on the system,
the flight version of CFDP was developed in-house at JHU/APL in order to have full control
over its operation. The ground CFDP element as created by JPL and integrated into
JHU/APL’s ground software. Excluding directory listings, files are generally downlinked
autonomously based upon a priority directory/naming scheme.

The spacecraft has been operating nominally since launch and has downlinked a couple
thousand files for a total of a 2-3 gigabytes of data. The primary problems encountered post
launch were due to the setting of the timers on both the spacecraft and the ground. This
caused a handful of transactions to time out prematurely thus resulting in the resending of
data. These circumstances result in the following lessons learned:

1) Allow Room in Default Timer Settings--all of the initial problems encountered with
CFDP could have been avoided through the proper setting of the various timers within
the CFDP system. The default settings for these timers were insufficient to accommodate
the various hiccups that may occur during checkout as well as the speed at which round
trip light time would influence these variables. Since extra bandwidth was available
during this time frame, a better method would have been to have given quite a bit of
room for these timers to ensure that the system was working in general and only when the
bandwidth constraints would soon require it, proceed to more a tightly constrained
environment.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-39 April 2007

2) Lead CFDP Engineer--these initial problems could have been alleviated by having
treated CFDP as a subsystem and having had one individual responsible for testing and
understanding the system as a whole. This benefit is derived from CFDP being a closed
loop system where operations on one entity can impact the functionality on another.
Although the flight developers knew their system and the ground developers knew theirs,
there was not one person who really knew both in a detailed way. When it came time for
operations personnel to try to analyze why there were initial file failures, there was no
one person to whom to turn.

3) Better Prepping of Operations Personnel--the flight and ground developers worked with
operations personnel throughout the development cycle, but it was evident that the
intricacies of timer settings was not properly conveyed. Understandably, the operations
personnel worked under the assumption that the delivered CFDP would work out of the
box. In general it did, provided there was little data loss or the files were kept to a
manageable size. However, in anomalous situations of excessive PDU loss or in the case
of larger than expected files, the timers were set too tight and the files were not received
correctly. Due to an insufficent amount of information being provided to Operations
personnel prior to launch, they were not positioned to respond to these anomalies
independently.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-40 April 2007

8.5 NASA/GSFC IMPLEMENTATION REPORT

NOTE – Contributed by Tim Ray, NASA/GSFC.

8.5.1 OVERVIEW

This implementation is based upon the CFDP State Tables and Kernel logic (see section 5).
It meets the minimum requirements for Service Classes 1 and 2. That is, it can send and
receive files in either Unacknowledged Mode or Acknowledged Mode.

NOTE – This implementation is written in the C programming language. It is the
implementer’s opinion that the conceptual design of this implementation would
be similar (although the mechanics would be different) if the implementation had
been written in object-oriented language.

8.5.2 STATE TABLE AND KERNEL CONCEPTS

There are three concepts essential to understanding this implementation, as follows:

a) There is one state table for each possible role (e.g., Class 2 Sender). Each state table
summarizes ‘what to do’ in response to all possible events.

b) There is one state machine for each active transaction. If there are three active
transactions for which my entity’s role is Class 2 Sender, then there will be three
Class 2 Sender state machines running. All three state machines will execute the
same state table logic, but each state machine will run independently of the others.

c) The Kernel is always active. It receives each incoming PDU or User Request, and
takes one of three actions: ignore the input, pass it on to the appropriate existing state
machine, or create a new state machine and then pass on the input.

8.5.3 DESIGN SUMMARY

There are four levels of modules, as follows:

a) CFDP Data Representation (i.e., defining CFDP Protocol Data Units as C data
structures);

b) CFDP Core (one module for each state table, plus a kernel module);

c) CFDP Support (e.g., a module to keep track of file gaps);

d) Utility (e.g., stopwatch timer).

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-41 April 2007

One design decision that I have been very happy with was to define C data structures to
represent each PDU. Each incoming PDU is immediately converted to a C data structure.
All ‘internal’ manipulations use the C data structures. Outgoing PDUs are converted from C
data structures just prior to release. I defined one structure for each PDU, plus a generic
structure that can hold any PDU. In object-oriented terms, I think this would be a base class
(‘Pdu’) and derived classes (e.g., ‘EofPdu’).

Another design decision that I have been very happy with was to develop CFDP Support (or
‘infrastructure’) modules. The idea is that the core CFDP logic changes, but the
infrastructure does not. While I was developing the state table logic, the tables changed
radically from one week to the next. While the tables are much more stable now, they will
probably be updated slightly over the coming years. On the other hand, actions like
‘Transmit Metadata’ or ‘Update Nak-list’ did not change. The result is that my CFDP Core
modules (e.g., the Class 2 Sender module) are almost a exact copies of the published state
tables. Every action called out by the state tables is a subroutine within a CFDP Support
module.

8.5.4 MODULE TREE

Unless otherwise specified, each module consists of an ‘.h’ file that defines its specification
and client interface, and a ‘.c’ file that contains its implementation.

Here is the high-level module tree:

Cfdp (the main routine is here)

 User (the user interface)

 Comm (the lower-layer communication interface)

 Udp (an interface to the User Datagram Protocol)

 Link_sim (simulates the physical link, e.g., dropping of data)

 Kernel

 Event (determines ‘event number’ from a given PDU or User Request)

 Machine_list (manages a list of state machines; add/delete/match, etc.)

 S1 (Class 1 Sender state table)

 R1 (Class 1 Receiver state table)

 S2 (Class 2 Sender state table)

 R2 (Class 2 Receiver state table)

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-42 April 2007

 Nak (keeps track of file gaps; i.e., which data needs to be resent)

Lower-level module shared by S1, R1, S2, and R2:

Aaa (the state table ‘action’ routines)

Lower-level modules shared by various modules:

Id (variable-length Ids; converts between ‘dotted string’ and ‘number’ Ids)

 Mib (access to Management Information Base settings)

 Pdu (assembles/disassembles PDUs from/to C structures)

Utility modules:

Data (dynamic allocation of strings and binary data)

 File (generic filesystem interface, i.e., opening/reading/writing files)

 Timer (stopwatch timer)

 Usleep (for sleeping for some number of milliseconds)

Data-structure definitions (these are ‘.h’ files; no accompanying ‘.c’ file):

Machine (a large structure containing all state machine variables)

 Pdu_data (defines Pdu fields, e.g., all possible values for ‘Condition Code’)

 Struct (defines a structure for each type of Pdu, plus a generic Pdu structure)

8.5.5 ADVICE

If you decide to base your implementation on the published state tables and Kernel, make
your state table modules (e.g., ‘class_2_sender.c’ or whatever) essentially a copy of the
published state tables. Make each action called out in the state tables a subroutine call. For
example, if the state table action is ‘Update Nak-list’, make a subroutine call to
‘update_nak_list’ or ‘NakList.update’ or something similar. If you do this, it will be much
easier to verify that your modules match the published state tables. Also, it will be much
easier to update your modules when the state tables are (inevitably) updated.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-43 April 2007

8.6 NASDA CFDP IMPLEMENTATION REPORT

NOTE – Contributed by Hiroaki Miyoshi, NASDA/NEC.

8.6.1 INTRODUCTION

NASDA has participated in CFDP development activities from the beginning, and has
contributed to the validation of CFDP through a series of software implementations, as well
as through the review of CFDP documentation (see figure 8-15).

0102030405060708091011 12

1997
CFD P History

 Concept Paper

Noordwijk Boulder Houston Noordwijk

 Red-1

 Red-2

Meetings

Red-3.0

Design/
Coding

0102030405060708091011 12

1998

0102030405060708091011 12

1999

0102030405060708091011 12

2000

0102030405060708091011 12

2001

Toulouse Newport Beach Annapolis Farnborough/Oxford Pasadena

Recommendations

NASDA's Implementations

 Red-3 Series

 Blue Series

 Red-4

Red-3.1 Red-3.2

Red-5.1 Blue-1

GENERATION-1

Evalu-
ations

GENERATION-2 Design/
Coding

Evalu-
ations

by CFD P Tester Inter-agency Test

GENERATION-3 Design/
Coding

Evalu-
ations

Internet Test

by Test bench

010203

2002

 Blue Series
Red-5.2

Inter-agency Test

GENERATION-4 Design/
Coding

Evalu-
ations

Internet Test

Figure 8-15: NASDA CFDP Implementation History

This implementation report provides detailed descriptions corresponding to the
GENERATION-4 implementation, based on final draft Recommendations and Reports.

Subsection 8.6.2 contains an overview of an implementation including policies,
environments, scope and architecture.

Subsection 8.6.3 contains detailed information concerning each software component.

Subsection 8.6.4 contains test results and a future plan.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-44 April 2007

8.6.2 HIGH-LEVEL DESIGN

8.6.2.1 Implementation Policies

The interoperability of the implementation was the first priority for inter-agency test.

Portability and expandability of the implementation were also emphasized in order to re-use
it for the next generation space and ground data systems of NASDA.

8.6.2.2 Implementation Environment

The NASDA CFDP implementation was developed under the Microsoft Visual Studio IDE
using the C++ programming language.

All computers used were IBM PC compatibles running Windows NT/2000 OS. A laptop
computer was frequently used because its mobility was a great advantage when a face-to-face
inter-agency test workshop was held overseas.

The UDP/IP Internet protocol stack over the Ethernet was selected for the subnetwork
interface of CFDP in order to enable an inter-agency test over the Internet. CFDP provides a
capability for reliable file transfer, which guarantees that all data will be delivered without
error, so TCP was not selected for a transport protocol of the subnetwork.

8.6.2.3 Implementation Scope

Table 8-2 describes the scope of the NASDA implementation.

Table 8-2: Scope of NASDA Implementation

CFDP Recommended Standard Implementation(Yes/No)
CFDP Procedures -
 Core Procedures -
 CRC Procedures No
 Checksum Procedures Yes
 Put Procedures Yes
 Transaction Start Notification Procedures Yes
 PDU Forwarding Procedures Yes
 Copy File Procedures Yes
 Positive Acknowledgment Procedures Yes
 Fault Handling Procedures Yes
 Filestore Procedures Yes
 Internal Procedures Yes
 Inactivity Monitor Procedures Yes
 Link State Change Procedures No
 Extended Procedures No
CFDP Protocol Classes -

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-45 April 2007

CFDP Recommended Standard Implementation(Yes/No)
 Class 1: Unreliable Transfer Yes
 Class 2: Reliable Transfer Yes
 Class 3: Reliable Transfer by Proxy Yes
CFDP Protocol Options -
 End Type -
 Sender Yes
 Receiver Yes
 Put Mode -
 UnACK Yes
 ACK/NACK Yes
 Put NAK Mode -
 Immediate Yes
 Deferred Yes
 Prompted No
 Asynchronous No
 Put File Type -
 Bounded Yes
 Unbounded No
 Segmentation Control -
 Yes or No No
 Put Primitives -
 EOF-sent.indication No
 File-Segment-Recv.indication Yes
 Fault handler -
 Ignore No
 Abandon Yes
 Cancel Yes
 Suspend No
 Cancel Put Action -
 Discard Yes
 Retain Yes
 Filestore Options -
 Create File Yes
 Delete File Yes
 Rename File Yes
 Append File No
 Replace File Yes
 Create Directory Yes
 Filestore Options (cont’d)
 Remove Directory Yes
 Deny File No
 Deny Directory No
 Timers -
 NAK Timer Yes
 ACK Timer Yes

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-46 April 2007

CFDP Recommended Standard Implementation(Yes/No)
 Prompt NAK Timer No
 Asynchronous NAK Timer No
 Keep Alive Timer Yes
 Prompt Keep Alive Timer No
 Inactivity Timer Yes
 Counters -
 NAK Retry Counter Yes
 ACK Retry Counter Yes
 Proxy Operations Yes
 Directory Operations No
 Remote Status Report Operations No
 Remote Suspend Operations No
 Remote Resume Operations No

8.6.2.4 Architecture

Figure 8-16 shows the architecture of the NASDA CFDP implementation.

The implementation consists of two Windows processes. One is a User Application Process
and the other is a CFDP Process. A User Application Process, which is invoked from
Windows’ GUI, automatically creates and initializes a CFDP Process.

User Application Process handles operations and displays from/to an operator. It also
intercepts reserved message to users for proxy operations and acts as a responding or
originating entity of the proxy.

CFDP Process consists of three parts, as follows:

a) CFDP Core handles CFDP core procedures that are described in the Recommended
Standard.

b) CFDP Core API is a sort of ‘glue logic’ between a user application and the CFDP
core logic. It standardizes the representation of a CFDP service interface (requests
and indications) among various user applications in order to maintain portability and
expandability of user applications.

c) Subnetwork API is also another ‘glue logic’ between Subnetwork and CFDP core. It
standardizes the representation of a subnetwork service interface, UNITDATA.request
and UNITDATA.indication, among various subnetwork interfaces in order to maintain
portability and expandability of CFDP Core.

The Winsock is adopted for Subnetwork implementation. In order to maintain portability,
only the Berkley-compatible socket interfaces are used.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-47 April 2007

User Application Process

User APL

CFDP Core

Proxy Processor

CFDP Core API

CFDP Core

Subnetwork API

Subnetwork (Winsock) Ethernet

Operations
& displays

IP
datagram

File & File
Directives

Requests &
Indications

CFDP PDUs

UDP data

CFDP Process

Requests &
Indications

CFDP Reserved
Message to User

Operator

File System

Network

Windows2000
Kernel

Requests &
Indications

Figure 8-16: The Architecture of NASDA CFDP Implementation

8.6.3 DETAILED DESIGN

8.6.3.1 CFDP Process

NOTE – Figure 8-17 shows the detailed internal structure of the CFDP Process.

8.6.3.1.1 CFDP Core API

CFDP Core API provides CFDP service interfaces between a User Application Process via
unnamed pipes, which are interprocess communication mechanisms available on Windows
NT/2000.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-48 April 2007

UI RX

UT TRX

Winsock

Timer

*.tmp

CFDP
Core
API

Subnet
work
API

CFDP Core

CFDP Main
State
Table

MIB file

MIB
Table

Tx File

Rx File

link list
Xn

Resource
Table

request indication

Rx queue

Rx queue
Tx queueAck

PDUs

PDUs

Timer
expiration

Figure 8-17: CFDP Process

CFDP Core API receives request primitives by means of a ‘UI RX thread’, which supervises
arrival of messages from an unnamed pipe, and forwards them to CFDP Core through a
request queue (RX queue).

On the other hand, CFDP Core API receives an indication primitives by means of a ‘service
function’, which provides some access method for an unnamed pipe.

Since unnamed pipes are also available on other platforms such as UNIX, the NASDA CFDP
implementation is easy to port to other operating systems. Also, because CFDP service
primitive messages exchanged on pipes are standardized according to the format shown in
figure 8-18, it is easy to extend service primitives for implementation-specific purposes in
the future.

Msg Block
Length

2octets

Msg Code

2octets

Msg Code
Extension

2octets

Msg Values (TLVs)

Msg Block Length - 6

Figure 8-18: CFDP Service Primitives Message Format

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-49 April 2007

8.6.3.1.2 CFDP Core

CFDP Core is the main part of the CFDP entity that drives a state table based on the current
state and the event that is received from outside, shifts to the next state, and outputs signals.

If a transaction is started by reception of a Request or a PDU, the empty workspace called
‘transaction resource table’ will be allocated and the transaction status will be stored there
for every transaction ID. The transaction will be setup based on protocol options stored in
the MIB Table. The ‘Transaction ID’ that is associated with the event identifies which
transaction status should be restored to a ‘CFDP main thread’ and processed.

Since this architecture is not premised on use of the service that only the specific operating
system can provide, it can obtain a suitable processing speed in Windows with a slow
process switching speed, and raises platform transplant nature.

The ‘timer thread’ holds various timer information which CFDP needs. The event that the
timer thread detected fault is notified to a CFDP main thread through a transaction resource
table and causes an appropriate state change.

The files that CFDP transmits and receives are managed with a ‘file-segment link list (link
list).’ A file divided into file-segments according to the maximum file segment length
parameter in the MIB and these file-segments are associated with an appropriate link list.
CFDP main thread uses this list and transmits file-segments in appropriate order.

The received file-segment PDUs are associated with an appropriate link list in order of
reception and saved to a temporary file. Missing file-segments are detected from comparison
of the file offset that was received last time and this time, and this comparison is used as the
source of retransmission requests by NAK. Received re-transmitted file-segments are
inserted into the appropriate position of the link list according to the file offset. The
temporary file is copied to a target file after a whole file is deemed to be received.

8.6.3.1.3 Subnetwork API

Subnetwork API provides UDP/IP communication services through the Winsock.

The transmitting part of API has two transmitting queues. One is a high priority queue only
for ACK PDUs, and the other is a low priority object for other PDUs. By taking this
composition, the delay from the PDU reception requiring an ACK to ACK transmission is
minimized. This is necessary to make the ACK timer interval setting sensible. CFDP Core
can transmit PDUs except for ACK PDUs to the other low priority queue by means of a
service function.

The receiving part of API supervises a socket via the thread (UT TRX). When it detects
receipt of a PDU, it stores the received PDU to a receiving queue (RX Queue). A read
function of the Rx queue is provided for CFDP Core.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 8-50 April 2007

8.6.3.2 User Application Process

A User Application Process mainly takes charge of operations and displays the operator
interface. Standard GUI for Windows is adopted as this interface.

Moreover, it contains the processing part that takes charge of proxy operations (Proxy
Processor). By mounting a Proxy Processor apart from CFDP Core, a standardization of the
interface between CFDP Core and an upper layer can be attained, and it provides flexibility
to develop future protocol functions, such as Extended Procedures.

The relation between two or more transactions for a proxy operation is managed on the proxy
operation management table contained in the Proxy Processor.

8.6.4 CONCLUSIONS

8.6.4.1 Concluding Remarks

The inter-agency testing over the Internet was carried out at the end of October 2001, and the
NASDA CFDP implementation described above talked successfully with NASA/JPL,
BNSC/DERA, ESA/ESTEC, and NASA/GSFC.

8.6.4.2 Future Plans

NASDA will deploy this trial implementation to real projects, such as science data
management for earth observation satellites. NASDA also plans to evaluate Extended
Procedures.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-1 April 2007

9 REQUIREMENTS

9.1 GENERAL

This section contains the requirements for the CFDP. The development of the requirements
was driven by a reference set of five scenarios. These scenarios are included herein. The
requirements proper are divided into two subsections: the first lists the requirements for the
protocol itself, and the second lists the requirements for the implementation of the protocol.

9.2 CONFIGURATION SCENARIOS

9.2.1 BASIS

Five operational configuration scenarios were used as the basis for the requirements for
CFDP. The scenarios are described as both space-to-ground file transfer operations and as
ground-to-space file transfer operations. The primary difference for ground-to-space
transfers is that most spacecraft are capable of receiving transmissions from only one ground
station at a time. Therefore, those configurations implying multiple simultaneous
transmissions to a spacecraft in fact have serial non-overlapping access for uplink
transmissions.

9.2.2 SPACECRAFT/NETWORK CONTROL CENTER (NCC) WITH NO
INTERMEDIATE FILE TRANSFER ENTITY

9.2.2.1 Scenario 1

Scenario 1 consists of End-to-End service using no intermediate File Transfer (FT) entities,
as shown in figure 9-1.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-2 April 2007

Ground
Station

Frame/CLTU
Service

Frame/CLTU
Service

Ground
Station

Network
Control
Center

CFDP Service

Packet Service

Spacecraft
CFDP Service

Packet Service

Frame Service

Figure 9-1: Scenario 1

9.2.2.2 Scenario 1: Space-to-Ground

In Scenario 1, the file transfer takes place from a spacecraft to its associated NCC. Multiple
ground stations receive frames from the spacecraft and route them to the NCC, with or
without extracting packets (i.e., the ground stations may extract the packets using the SLE
packet service and forward the packets, or may instead forward the frames, in which case the
packets are extracted at the NCC). The ground stations’ frame acquisition may overlap one
another in time or be entirely disjoint. At the NCC, the packets are passed to the FT entity
for assembly and report generation. The reports are routed to the spacecraft’s FT entity via
the in-view ground station.

NOTE – The NCC’s FT entity discards duplicate blocks received during overlapping
contacts. The management of frame data at the ground station is not addressed
by the protocol.

The NCC’s FT entity detects loss and/or corruption of data blocks and requests that they be
retransmitted; it also tells the spacecraft’s FT entity which blocks it has successfully
received. The spacecraft’s FT entity retransmits blocks in response to requests from the
NCC’s FT entity, or in response to determination that an acknowledgment from the NCC’s
FT entity is overdue (either because the acknowledgment itself was lost, or because the
blocks to be acknowledged were not received). The source FT entity (on the spacecraft)
continues retransmission until the destination entity (in the NCC) has taken custody of the
entire FTU.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-3 April 2007

Upon notification of complete reception, or upon transaction cancellation (initiated by either
of the two FT entities), the spacecraft’s FT entity need no longer retain its copy of the FTU
in a retransmission buffer. If the data path is simplex (i.e., the NCC can never send data to
the spacecraft), then the spacecraft’s FT entity assumes that FTU reception is complete as
soon as it has finished transmitting the FTU; it may optionally send some or all data blocks
multiple times (i.e., ‘proactive retransmission’) in an attempt to improve the likelihood of
successful initial FTU reception.

NOTES

1 The protocol is used to transfer files between space and ground file systems.

2 The protocol can cause file system management commands to be executed with
respect to the remote file system (ground or space). FT entities issue those
commands in response to file system management command PDUs.

3 The spacecraft can be anywhere in space, from near-Earth orbit to the furthest reaches
of the solar system and beyond.

4 Multiple transfers may be in flight concurrently.

5 The protocol may operate over TM/TC packets.

6 Transfers can span link passes (contacts).

7 The protocol delivers a file completion map along with the file (which may be
incomplete).

8 A file is defined to be an array of octets (not bits).

9 The ‘ground’ (the NCC) is a single protocol endpoint, a single FT entity; individual
receiving stations are not FT entities in this scenario.

10 The protocol discards duplicate data.

11 The protocol is defined in levels to facilitate a range of implementation complexities
from simple to complex. Metadata can command the destination FT entity to:

a) get and put;

b) plus delete, rename, etc.;

c) plus mkdir, rmdir, etc.;

d) perform other functions yet to be defined (e.g., append, rename, patch, read).

12 Support for time-outs: each FT entity involved in one link of a communication path
is aware of the one-way light time between the two, and the presumed operative state
of the other.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-4 April 2007

13 Optional features:

a) send and forget (simplex transmission);

b) incremental NAK: the receiving FT entity additionally reports on its
reception state (sends a NAK) immediately whenever it detects any missing
data block (again, the NAK is automatic, but provides for manual intervention
in case of anomaly).

9.2.2.3 Scenario 1: Ground-to-Space

Scenario 1 is also valid for ground-to-space file transfer. In that case, the file transfer takes
place, for example, from an NCC to a spacecraft. Multiple ground stations receive packets or
frames from the NCC (i.e., the ground stations may insert the packets into frames, or this
may be done at the NCC, in which case the ground stations receive frames) and route them to
the spacecraft. Because spacecraft usually (with the possible exception of large manned
spacecraft) can support only one uplink at a time, the frames are sent to the spacecraft from
one ground station at a time, in separate contacts. At the spacecraft the packets are passed to
the FT entity for assembly and report generation. The reports are routed to the NCC’s FT
entity via the in view ground station.

NOTE – The spacecraft’s FT entity discards any duplicate blocks which might have been
caused by ground station-to-ground station switchovers.

The spacecraft’s FT entity detects loss and/or corruption of data blocks and requests that they
be retransmitted; it also tells the NCC’s FT entity which blocks it has successfully received.
The NCC’s FT entity retransmits blocks in response to requests from the spacecraft’s FT
entity, or in response to determination that an acknowledgment from the spacecraft’s FT
entity is overdue (either because the acknowledgment itself was lost or because the blocks to
be acknowledged were not received). The source FT entity (in the NCC) continues
retransmission until the destination entity (in the spacecraft) has taken custody of the entire
FTU.

Upon notification of complete reception, or upon transaction cancellation (initiated by either
of the two FT entities), the NCC’s FT entity need no longer retain its copy of the FTU in a
retransmission buffer. If, perhaps because of a spacecraft anomaly, the data path is simplex
(i.e., the spacecraft cannot send data to the NCC), then the NCC’s FT entity assumes that
FTU reception is complete as soon as it has finished transmitting the FTU; it may optionally
send some or all data blocks multiple times (‘proactive retransmission’) in an attempt to
improve the likelihood of successful initial FTU reception.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-5 April 2007

9.2.3 SPACECRAFT/USER VIA A SINGLE RELAY ENTITY

9.2.3.1 Scenario 2

Scenario 2 consists of a Hop-by-Hop service using an intermediate store-and-forward
process, as shown in figure 9-2.

X

CFDP Service
TCP

User

Network
Control
Center

TCP CFDP Service

X

Packet Service

Ground
Station

Frame/CLTU

Service

Ground
Station

Frame/CLTU

Service

Spacecraft

CFDP ServicePacket ServiceFrame Service

X

Figure 9-2: Scenario 2

9.2.3.2 Scenario 2: Space-to-Ground

The first Scenario 2 example is a file transfer from a spacecraft to a User via one
intermediate entity, the NCC. The User may not always be online, or connection rate
limitations might require the NCC to provide store-and-forward delivery. The file transfer
from the spacecraft is performed by the NCC’s FT entity. The NCC’s FT entity serves as a
reliable forwarding entity, allowing the spacecraft’s FT entity to delete its copy of the file if
necessary. File transfer to the User Application is accomplished by the NCC.

NOTE – The NCC’s operations with the ground stations and spacecraft are as described in
Scenario 1. The protocol can delete the file from the NCC when transfer to the
User is accomplished. A protocol status report is sent from the User to the
spacecraft.

The source FT entity (on the spacecraft) continues retransmission until the intermediate
receiving entity (in the NCC) has taken custody of the entire FTU. The intermediate
receiving entity (in the NCC) begins transmission of the FTU to the destination receiving

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-6 April 2007

entity (the User process) as soon as the applicable interim-acquisition rule has been satisfied;
this rule might be declared in transaction metadata, or a default rule might be in effect. The
intermediate receiving entity continues retransmission until the destination receiving entity
has taken custody of the entire FTU, at which time the destination receiving entity notifies
the User application.

NOTES

1 The file has proximate as well as final destinations; thus, the protocol has data block
relay functionality.

2 There are also final and proximate sources; thus, the protocol has status report-relay
functionality.

3 Each intermediate entity has store-and-forward capability; a ground station might or
might not be configured as an intermediate entity.

4 The protocol has interim-acquisition rules in effect at each receiving FT entity, for
example:

a) forward when N% of the file is received;

b) forward when the link from the sender is lost;

c) forward when the link to the receiver is available.

9.2.3.3 Scenario 2: Ground-to-Space

Scenario 2 is also valid for ground-to-space file transfer. An example is a file transfer from a
User to a spacecraft. As in the space-to-ground case, the transfer is via one intermediate
entity, the NCC. The spacecraft may not always be online, or connection rate limitations
might require the NCC to provide store-and-forward delivery. The file transfer from the
User is performed by the NCC’s FT entity. The NCC’s FT entity serves as a reliable
forwarding entity, allowing the User’s FT entity to delete its copy of the file if necessary.
File transfer to the spacecraft is accomplished by the NCC. As in Scenario 1, because
spacecraft usually can support only one uplink at a time, the frames are sent to the spacecraft
from one ground station at a time, in separate contacts.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-7 April 2007

9.2.4 ROVER/NCC VIA MULTIPLE RELAY ENTITIES IN SERIES

9.2.4.1 Scenario 3

Scenario 3 consists of a service from a source through multiple relaying entities in series to a
final destination, as shown in figure 9-3.

CFDP Service
Packet Service
Frame Service

XRover

Lander
CFDP

Service
Service

Service

Packet
Frame

X

CFDP Service

Packet Service

Frame Service

Orbiter
X

Frame/CLTU

Servic
e

Ground

Station

CFDP Se rvice

Packet Se rvice

X
Network

Contro
l

Center

Frame/CLTU

Service

Ground

Station

Figure 9-3: Scenario 3

9.2.4.2 Scenario 3: Space-to-Ground

The space-to-ground example is a file transfer from a planetary Rover to an NCC, via a
planetary Lander, a planetary Orbiter, and ground stations on Earth. In the example, the
Lander and the Orbiter are reliable entities. The files on the Rover and subsequently on the
Lander and Orbiter are deleted after acknowledged transfer to the next ‘reliable forwarding
entity’ is completed.

Each intermediate FT entity begins transmission as soon as the applicable interim-acquisition
rule has been satisfied (and it has contact with the next FT entity), and continues
retransmission until the corresponding receiving entity has taken custody of the entire FTU.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-8 April 2007

A minor variation of this scenario is to combine it with Scenario 2; i.e., make the NCC
another in the series of intermediate entities and add a User application at the destination FT
entity for the transaction.

9.2.4.3 Scenario 3: Ground-to-Space

The ground-to-space example of Scenario 3 is a file transfer from an NCC to a planetary
Rover, via ground stations on Earth, a planetary Orbiter, and a planetary Lander. In the
example, the Orbiter and the Lander are reliable entities. The files in the NCC, and
subsequently on the Orbiter and Lander, are deleted after acknowledged transfer to the next
‘reliable forwarding entity’ is completed.

Each intermediate FT entity begins transmission as soon as the applicable interim-acquisition
rule has been satisfied (and it has contact with the next FT entity), and continues
retransmission until the corresponding receiving entity has taken custody of the entire FTU.

As in Scenario 1, because spacecraft usually can support only one uplink at a time, the
frames are sent to the Orbiter from one ground station at a time, in separate contacts.

9.3 PROTOCOL REQUIREMENTS

9.3.1 GENERAL

This subsection contains the File Delivery Protocol Functional Requirements. For ease of
review, they are divided into five groups. These groups are:

a) Requirements Related to Communications.

b) Requirements Related to Underlying Layers.

c) Requirements Related to Structure.

d) Requirements Related to Capabilities.

e) Requirements Related to Records, Files, and File Management.

9.3.2 REQUIREMENTS RELATED TO COMMUNICATIONS

Many of the requirements for the protocol are set by the environment in which it must
operate. These include the physical characteristics of the communications links, as well as
the availability of those links. The physical characteristics of the communications links
include their quality (noisiness), bandwidth, propagation delay, operating mode (Simplex,
Half-Duplex, Full-Duplex), and availability. Refer to table 9-1.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-9 April 2007

Table 9-1: Requirements Related to Communications

Group
Num. Requirement

Req.
Ref.
Num. Source

comm 01 The protocol shall be appropriate for both deep space and
near earth missions.

01 E11, G1,
I1, J15

comm 02 The protocol shall provide effective and efficient service
over communications links with propagation delays
spanning milliseconds to tens of hours.

02 C4, G3

comm 03 Round trip communications time shall be provided to the
protocol from an external source.

66 J37

comm 04 The protocol shall provide effective and efficient service
over communications links which are typically bandwidth-
restricted.

03 C3

comm 05 The protocol shall provide effective and efficient service
over communications links which may be significantly
unbalanced in bandwidth.

04 C3, G2

comm 06 The protocol shall provide effective and efficient service
when allocation of the available bandwidth is not under the
control of the protocol.

05 C1

comm 07 The protocol shall provide effective and efficient service
over communications links which have frequent outages.

06 J30

comm 08 The protocol shall provide effective and efficient service
over communications links which have long outages.

07 G4,
G12, J31

comm 09 The protocol must be capable of providing effective and
efficient service over a simplex link.

19 C5, J16,
J19

comm 10 The protocol must be capable of providing effective and
efficient service over a half-duplex link.

20 C5, E15,
J16

comm 11 The protocol must be capable of providing effective and
efficient service over full-duplex links.

21 J16

comm 12 Where the underlying protocols can provide the
appropriate level of responsiveness, the protocol shall
operate when the underlying protocols in both directions
provide Reliable service.

22 C1

comm 13 Where the underlying protocol can provide the appropriate
level of responsiveness, the protocol shall operate when the
underlying protocol in only one direction provides Reliable
service.

23 C1, G5,
J14

comm 14 The protocol shall operate when the underlying protocols
in both directions provide Unreliable service.

24 C1, G5,
J14

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-10 April 2007

9.3.3 REQUIREMENTS RELATED TO UNDERLYING LAYERS

The protocol must be able to operate over a wide range of underlying services. Where the
underlying services are CCSDS, it must operate over the CCSDS Path Service in Grades of
Service 2 and 3. In addition, it must operate over conventional commercial protocols in
order to provide required store-and-forward services. See table 9-2.

Table 9-2: Requirements Related to Underlying Layers

Group
Num. Requirement

Req.
Ref.
Num. Source

undr 01 The protocol shall provide the capability to operate over
current CCSDS Packet Telemetry, Advanced Orbiting
Systems, and Telecommand protocols and shall not inhibit
the normal operation of these protocols.

11 C8, E2,
E3, E4,
E5, G9,
G10,
I12, J2,
J26, J27

undr 02 The protocol shall provide the capability to operate over
TCP/UDP.

50 E27, J2

undr 03 The protocol shall provide full capabilities over the
services provided by existing packet recommendations.

75 E03

undr 04 Full advantage shall be taken of the characteristics of the
Packet TM/TC service, i.e., normally ‘perfect’ data in
sequence with possible omissions.

76 E05

9.3.4 REQUIREMENTS RELATED TO STRUCTURE

Two requirements relate to the user-visible structure of the protocol, as described in table 9-3.

Table 9-3: Requirements Related to Protocol Structure

Group
Num. Requirement

Req.
Ref.
Num. Source

struct 01 The protocol shall operate between automated, essentially
symmetrical peer entities.

09 I3

struct 02 A single service interface will be presented to the client. 10 E10
struct 03 The protocol shall be scaleable so that it may be used on

relatively simple, current technology spacecraft, as well as
on sophisticated, advanced design spacecraft.

60 G6, G7,
G8, J1

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-11 April 2007

9.3.5 REQUIREMENTS RELATED TO PROTOCOL CAPABILITIES

The largest group of requirements relate to the capabilities and operating characteristics
which the protocol must possess. Refer to table 9-4.

Table 9-4: Requirements Related to Protocol Capabilities

Group
Num. Requirement

Req.
Ref.
Num. Source

cap 01 A protocol Peer shall be capable of both receiving and
transmitting files simultaneously.

25 E23,
G13, J1,
J5

cap 02 A protocol Peer shall be capable of concurrently
supporting multiple file transfer instances.

26 E23,
G14, J4

cap 03 The protocol shall provide the capability to transfer both
files (arrays of octets, which may or may not be further
structured as arrays of CCSDS packets) and metadata
(which may or may not pertain to those files).

39 I02

cap 04 A file is defined to be an array of octets (not bits). 65 J35
cap 05 The protocol shall handle variable record sizes. 40 E19
cap 06 The protocol shall allow file transfer up to (2^32)-1 octets. 42 E13
cap 07 The protocol shall allow requests for a file transfer to

specify the file by name.
43 I8

cap 08 The protocol shall provide immediate access to the
received data as it is received, i.e., without waiting for the
file to be completed

37 E25,
G17, J3

cap 09 The protocol shall provide the capability to operate in a
‘Single Transmission’ mode, in which the data are sent
once and only once.

28 C10

cap 10 The protocol shall provide the capability to operate in a
‘Selective Retransmission’ mode, in which missing or
corrupted sub-data units are identified by the receiving
Peer to the sending Peer, and the sending Peer then
retransmits those and only those sub-data units.

30 C12,
G15, I10

cap 11 The protocol shall be automatic, but shall provide for
manual intervention in case of anomaly.

78 E09

cap 12 The protocol shall support suspend and resume operations. 53 I13
cap 13 The receiving protocol Peer shall remove any duplicate

data received.
61 G16, J36

cap 14 The protocol shall provide the capability of initiating a file
transfer without transfer initiation handshaking between
the Peers.

31 I7, J19

cap 15 The protocol receiving Peer shall provide the capability to, 35 C9, I6,

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-12 April 2007

Group
Num. Requirement

Req.
Ref.
Num. Source

during the file transfer process, make available to the using
Application the status of the available received data,
including reporting that: a) data are still being received
(and the available data do or do not contain errors), and b)
data have been completely received (and retransmission
requests are or are not pending) (and the available data do
or do not contain errors).

J7, J8, J9

cap 16 The protocol receiving Peer shall provide the capability to
periodically report comprehensive status back to the
sending Peer.

32 J7, J8, J9

cap 17 The protocol receiving Peer shall not require
acknowledgment of the comprehensive status reports to
proceed if the file integrity is detected to be correct.

33 J19

cap 18 The protocol receiving Peer shall provide the capability to,
upon receiving a complete and correct file, provide a final
acknowledgment to the sending Peer.

36 I6, J24

cap 19 The protocol shall be capable of completion of a file
transfer without transfer completion handshaking between
the Peers.

38 I7, J3

cap 20 The protocol shall provide the capability to allow file
transfers to span protocol Sender/protocol Receiver
contacts.

62 E24, J33

cap 28 The protocol shall inform the recipient application that the
file is available for use. If the file is incomplete, the
temporary name being used by the protocol process shall
be provided along with a completeness map.

64 J34

cap 29 The scope of the data being transferred may be multiple
extents (not just a single length starting at zero), which
may change over time.

72 J43

cap 30 The protocol shall provide proxy file service. 81 I15
cap 31 For operation over unreliable lower layers, a checksum for

each file segment shall be optionally provided.
82 E28

cap 32 For bounded files, a checksum for the entire file shall be
provided.

83 E29

9.3.6 MANAGEMENT

The requirements which delineate the record handling, file handling, file management, and
directory management which the protocol must possess are listed in table 9-5.

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page 9-13 April 2007

Table 9-5: Requirements Related to Records, Files, and File Management

Group
Num. Requirement

Req.
Ref.
Num. Source

rfm 01 The protocol shall assume the following set of file access
primitives from the local file system: ‘Open’, ‘Read’,
‘Write’, ‘Seek’, ‘Remove’, and ‘Close’.

44 E18, J28

rfm 02 The protocol shall provide File transfer capabilities of ‘Get’
(request file transfer from remote Peer to local Peer), and
‘Put’ (request file transfer from local Peer to remote Peer).

45 E20,
G11, J32

rfm 03 The protocol shall provide the following file handling
services: Load a New File, Send a File, Modify a File, and
Replace an Existing File.

46 G11,
J10, J32

rfm 04 The protocol shall provide the following file management
services: Request a File, Rename a File, Delete a File, and
Report a File Status.

47 E21,
G11,
J11, J32

rfm 05 The protocol shall provide the following file directory
management services: Create directory, List directory,
Rename directory, Delete directory, Change to directory,
and Report current directory.

48 E22,
G11,
J29, J32

rfm 06 The protocol file transfer services shall be independent of
local filing systems.

63 E26

9.4 IMPLEMENTATION REQUIREMENTS

The requirements on the implementation of the File Delivery Protocol are shown in table 9-6.

Table 9-6: Implementation Requirements

Group
Num. Requirement

Req.
Ref.
Num. Source

imp 01 The protocol shall minimize the load on onboard
computing resources.

58 C6, G8

imp 02 The protocol shall minimize the use of onboard memory
resources.

59 C7, E1,
G8

imp 03 The protocol specification shall be fully validated and
tested.

56 J13

imp 04 The protocol sending Peer shall have the option of
responding to the final acknowledgment of receipt by
deleting the file that is known to have been correctly
transmitted.

51 J25

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page A-1 April 2007

ANNEX A

ACRONYMS AND ABBREVIATIONS

ACK Positive Acknowledgment

APL Applied Physics Laboratory (at Johns Hopkins University)

BEOP Burst Error Occurrence Probability

BNSC British National Space Centre

CCSDS Consultative Committee for Space Data Systems

C&DH Command and Data Handling

CFDP CCSDS File Delivery Protocol

CNES Centre National d’Etudes Spatiales

CPSC CDFP Packet Service Component

DERA Defence Evaluation and Research Agency

EOF End of File

ESOC European Space Operations Centre

ESTEC European Space Research and Technology Centre

FD(n) File Data Segment

FIN Finished (receiver to sender)

FDU File Delivery Unit

FIFO First-In-First-Out

FT File Transfer

G&C Guidance and Control

GEO Geosynchronous Earth Orbit

GTO Geosynchronous Transfer Orbit

GUI Graphical User Interface

IDE Integrated Development Environment

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-3 Page A-2 April 2007

ITU International Telecommunication Union

JHU Johns Hopkins University

LEO Low Earth Orbit

M Metadata

MCC Mission Control Center

MIB Management Information Base

MSB Most Significant Bit

NAK Negative Acknowledgment

NCC Network Control Center

OSI Open Systems Interconnection

PDU Protocol Data Unit

PRMPT Prompt

RTM Relay Testing Module

SAD Software Architectural Design

SDL Specification and Description Language

TBS To Be Supplied

TC Telecommand

TCP Transmission Control Protocol

TM Telemetry

UDP User Datagram Protocol

UT Unitdata Transfer

VCL Visual Component Library

XN Transaction

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT

	AUTHORITY
	FOREWORD
	DOCUMENT CONTROL
	CONTENTS
	INTRODUCTION
	1.1 PURPOSE
	1.2 SCOPE
	1.3 ORGANIZATION OF THIS REPORT
	1.4 CONVENTIONS AND DEFINITIONS
	1.5 REFERENCES

	CFDP PROTOCOL DATA UNITS
	2.1 OVERVIEW
	2.2 FIXED PDU HEADER
	2.3 OPERATION PDUs
	2.4 MONITOR AND CONTROL PDUs
	2.5 TERMINATION PDUs

	3 USER OPERATIONS MESSAGE FORMATS
	3.1 USER OPERATIONS
	3.2 PROXY OPERATIONS
	3.3 DIRECTORY OPERATIONS
	3.4 REMOTE STATUS REPORT OPERATIONS
	3.5 REMOTE SUSPEND OPERATIONS
	3.6 REMOTE RESUME OPERATIONS
	3.7 STORE-AND-FORWARD OVERLAY (SFO)

	PROTOCOL OPTIONS, TIMERS, AND COUNTERS
	4.1 OVERVIEW
	4.2 OPTIONS
	4.3 TIMERS
	4.4 COUNTERS

	5 CFDP STATE TABLES
	5.1 OVERVIEW
	5.2 STATE TABLES
	STATE TABLE NOTES
	5.4 KERNEL
	5.5 EVENTS
	5.6 ACTIONS
	5.7 INTERNAL VARIABLES

	6 AN SDL/GRAPHICAL REPRESENTATION OF CFDP STATE DIAGRAMS
	6.1 PURPOSE AND SCOPE
	6.2 STATE DIAGRAM TERMINOLOGY
	6.3 GRAPHICAL SYMBOL CONVENTION

	IMPLEMENTATION CONSIDERATIONS
	7.1 OVERVIEW
	7.2 IMPLEMENTATION NOTES
	7.3 TRANSFERRING SUPPORTING INFORMATION
	7.4 EXAMPLE FILE CHECKSUM CALCULATION
	7.5 JPL NOTES ON CFDP IMPLEMENTATION
	7.6 SIMPLE ANALYSIS OF NAK RETRANSMISSION

	IMPLEMENTATION REPORTS
	8.1 OVERVIEW
	8.2 BNSC/QINETIQ IMPLEMENTATION REPORT
	8.3 ESA/ESTEC IMPLEMENTATION REPORT
	8.4 JHU/APL IMPLEMENTATION REPORT
	8.5 NASA/GSFC IMPLEMENTATION REPORT
	8.6 NASDA CFDP IMPLEMENTATION REPORT

	REQUIREMENTS
	9.1 GENERAL
	9.2 CONFIGURATION SCENARIOS
	9.3 PROTOCOL REQUIREMENTS
	9.4 IMPLEMENTATION REQUIREMENTS

	ANNEX A ACRONYMS AND ABBREVIATIONS

