
Space Data Systems
Committee for
Consultative

REPORT CONCERNING SPACE

DATA SYSTEM STANDARDS

GREEN BOOK

May 1992

CCSDS 621.0-G-1

TMG 8/92

STANDARD FORMATTED
DATA UNITS —

A TUTORIAL

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

AUTHORITY

Issue: Green Book, Issue 1
Date: May 1992
Location: CCSDS Panel 2 Meeting, May

1992, Oberpfaffenhofen, Germany

This report reflects the consensus technical understanding of the Panel 2 members representing the
following member Agencies of the Consultative Committee for Space Data Systems (CCSDS):

• British National Space Centre (BNSC) / United Kingdom
• Canadian Space Agency (CSA) / Canada
• Centre National D’Etudes Spatiales (CNES) / France
• Deutsche Forschungsanstalt für Luft und Raumfahrt (DLR) / FRG
• European Space Agency (ESA) / Europe
• Instituto de Pesquisas Espaciais (INPE) / Brazil
• National Aeronautics and Space Administration (NASA) / USA
• National Space Development Agency of Japan (NASDA) / Japan

The following observer Agencies also technically concur with this report:

• Department of Communication/Communications Research Centre (DOC/CRC)
/ Canada

• Institute for Space Astronautics and Science (ISAS) / Japan

This Report is published and maintained by:

CCSDS Secretariat
Communications and Data Systems Division, (Code-OS)
National Aeronautics and Space Administration
Washington, DC 20546, USA

Issue 1 May 1992iii

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

DOCUMENT CONTROL

Document Title Date Status/
Remarks

CCSDS 621.0-G-1 Report Concerning Space Data
System Standards: Standard
Formatted Data Units -- A
Tutorial, Green Book, Issue 1

May 1992 Issue 1 (this document
supersedes CCSDS
620.0-G-1)

Issue 1 May 1992iv

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

CONTENTS

Sections

1 INTRODUCTION . 1
1.1 Purpose . 1
1.2 Document Organisation . 1

2 BACKGROUND . 3
2.1 The Problems of Data Interchange and Archiving . 3
2.2 Overview of the Standard Formatted Data Unit (SFDU) Concept 4
2.3 General SFDU Usage . 4

2.3.1 An Example of Ad-Hoc Data Interchange . 5
2.3.2 An Example of Operational Data Interchange . 5

3 THE SFDU BASIC ELEMENTS AND SFDU STRUCTURING . 7
3.1 SFDU Building Blocks - The Label-Value-Object . 7
3.2 SFDU Structuring . 8

3.2.1 Simple LVOs . 8
3.2.2 Compound LVOs . 8

3.2.2.1 Exchange Data Unit (EDU) . 10
3.2.2.2 Application Data Unit (ADU) . 10
3.2.2.3 Description Data Unit (DDU) . 11

3.3 EDU Structure Diagram . 11
3.4 LVO LABEL FIELD SPECIFICATIONS USED IN SFDUS 12

3.4.1 Overview of Class Identifiers . 14
3.4.2 Overview of CCSDS Defined ADIDs . 15

3.5 Combining ADIDs and Class IDs . 15

4 PACKAGING TECHNIQUES . 18
4.1 Envelope Packaging . 18
4.2 Referencing Techniques - the Replacement Service . 18

4.2.1 The REFERENCETYPE Statement . 22
4.2.1.1 Proposed Referencing Environment Specifications 23

5 DELIMITATION TECHNIQUES . 26
5.1 Delimitation By Length . 26
5.2 Other Delimitation Techniques . 27

5.2.1 Delimitation by Marker Pattern - Delimitation ID = S 28
5.2.2 Delimitation by End-of-File (EOF) . 30

5.2.2.1 Sequential End-of-File - Delimitation ID = E 31
5.2.2.2 Contiguous End-of-Files - Delimitation ID = C 32
5.2.2.3 Shared End-of-File - Delimitation ID = F 33

5.3 Combining Delimitation Techniques . 34
5.4 Potential Errors In Combining Delimitation Techniques . 37

6 THE COMPOUND LVOS . 39
6.1 The Application Data Unit . 39
6.2 The Description Data Unit . 41

6.2.1 Overview . 41
6.2.2 Data Description Identification . 43

Issue 1 May 1992v

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

6.2.3 Data Description Records - LVOs with Class ID = D 44
6.2.4 Data Entity Dictionaries - LVOs with Class ID = E 44
6.2.5 Supplementary Metadata - LVOs with Class ID = S 45

7 REQUIREMENTS, RATIONALES AND COMPLIANCE . 46
7.1 Requirements . 46

7.1.1 Product Building or Data Packaging . 46
7.1.2 Data Delimitation . 48
7.1.3 Data Description . 49

7.2 Requirements Implementation Compliance . 50

8 EXAMPLE SFDU APPLICATIONS . 51
8.1 European Retrievable Carrier (EURECA) . 51
8.2 Halley Watch . 55
8.3 Data Description Registration and Dissemination . 58
8.4 Data Description Language Usage for Data Description Record Writing 61

Annex A: Acronyms . 67

Annex B: Glossary of Terms . 69

INDEX . 71

Figures

Figure 1-1: Example Structure Diagram . 2
Figure 3-1: LABEL-VALUE Encoding Structure . 7
Figure 3-2: Structure Diagram of a Simple LVO . 8
Figure 3-3: Structure Diagram of a Compound LVO . 9
Figure 3-4: Examples of Packaging LVOs within LVOs . 9
Figure 3-5: Example of the Use of ADUs . 10
Figure 3-6: Example of the Use of DDUs . 11
Figure 3-7: Structure Diagram of an EDU . 12
Figure 3-8: CCSDS LABEL Specification - Version ID = 1, 2 and 3 . 12
Figure 3-9: SFDU Class ID Breakdown . 14
Figure 4-1: Envelope Packaging . 18
Figure 4-2: More Complex Envelope Packaging . 18
Figure 4-3: The Replacement Service - Referencing a File Containing a LVO 19
Figure 4-4: The Replacement Service - Referencing an Unlabelled Data Object in a File 19
Figure 4-5: Structure Diagram of the PVL Statements within an LVO with ADID =

CCSD0003 . 20
Figure 4-6: Following the Structure Rules when Referencing LVOs . 21
Figure 4-7: Example of an ERROR due to NOT Following the Structure Rules when

Referencing an LVO . 22
Figure 4-8: Structure Diagram of $CCSDS1 Name Specification . 23
Figure 5-1: Schematic of Length Delimitation . 26
Figure 5-2: Example of Delimitation by Marker Pattern of a Simple LVO 28
Figure 5-3: Examples of Delimiting Compound LVOs by Marker . 29
Figure 5-4: Example of Nesting of Marker Delimitation . 30
Figure 5-5: A single LVO Delimitation by 2 EOFs . 31
Figure 5-6: An Example of Nested EOFs . 32
Figure 5-7: Delimitation by Contiguous EOFs of a Simple LVO . 32
Figure 5-8: An Example of Nesting Contiguous EOFs . 33

Issue 1 May 1992vi

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 5-9: An Example of Use of Shared End-of-File Delimitation . 34
Figure 5-10: Mixing Delimitation by Length and Marker . 35
Figure 5-11: Mixing Delimitation by Contiguous EOF with Sequential EOF 35
Figure 5-12: Mixed EOF Delimitation Techniques and Nesting . 36
Figure 5-13: Schematic of Mixed EOF Delimitation Techniques and Nesting 36
Figure 5-14: Nesting of EOF Delimitation within Length Delimitation . 37
Figure 5-15: Error in Length Delimitation Value . 37
Figure 5-16: Error in Nesting EOF delimitation within Length Delimitation 38
Figure 5-17: Erroneous Occurrence of an EOF within a Length Delimited LVO 38
Figure 6-1: Example of an ADU . 39
Figure 6-2: Example of Nested ADUs . 40
Figure 6-3: Referencing of Data Descriptions . 41
Figure 6-4: Example of a DDU . 42
Figure 6-5: Data Object/DDU Relationship . 42
Figure 6-6: Example of DDU with Referenced DDR/DED . 44
Figure 6-7: DDR LVO Example . 44
Figure 6-8: DED LVO Example . 44
Figure 6-9: Supp. Metadata Example . 45
Figure 7-1: Schematic of Visible Image Scan . 47
Figure 7-2: Schematic of Eureca Product Structure . 47
Figure 8-1: Schematic of Data Delivery Format for EURECA . 52
Figure 8-2: Overall Structure of VOLDESC.SFD SFDU . 55
Figure 8-3: Detailed Schematic of VOLDESC.SFD File . 57
Figure 8-4: Schematic for a Data Description Registration Package Template 59
Figure 8-5: Data Description Package in SFDU Form as Received from Control Authority 60
Figure 8-6: Schematic Layout of DORIS Telemetry . 62
Figure 8-7: Example of an Ada DDR Describing the DORIS Equipment Telemetry 64
Figure 8-8: Example of an Ada DDR Describing the DORIS Equipment Telemetry (continued

from previous page) . 65

Tables

Table 3-1: Summary of the Version ID Dependent Sub-fields in the LABEL 13
Table 3-2: Summary of CCSDS Defined ADID Specifications . 15
Table 3-3: ADID and Class ID Combination Categorisations . 16
Table 3-4: CCSDS Defined Combinations of Class IDs and ADIDs . 17
Table 3-5: Examples of $CCSDS1 Referencing Environment Filenames 24
Table 3-6: Examples of Wildcards used in Referencing Environments 25
Table 3-7: Delimitation IDs . 28
Table 7-1: Requirements Compliance . 50
Table 8-1: VALUE field of Catalogue Record in EURECA DDS . 53
Table 8-2: VALUE field of Acknowledgement Record in EURECA DDS 54
Table 8-3: VOLDESC.SFD File Contents . 56

Issue 1 May 1992vii

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

REFERENCES

[1] "Recommendation for Space Data System Standards: Standard Formatted Data Units --
Structure and Construction Rules", CCSDS 620.0-B-1, Blue Book, Issue 1, Consultative
Committee for Space Data Systems, May 1992 or later.

[2] "Recommendation for Space Data System Standards: Parameter Value Language
Specification (CCSD0006)", CCSDS 641.0-B-1, Blue Book, Issue 1, Consultative Committee
for Space Data Systems, May 1992 or later.

[3] "Recommendation for Space Data System Standards: Standard Formatted Data Units --
Control Authority Procedures", CCSDS 630.0-R-2, Red Book, Issue 2, Consultative Committee
for Space Data Systems, April 1992 or later.

[4] "Recommendation for Space Data System Standards: ASCII Encoded English (CCSD0002)",
CCSDS 643.0-R-1, Red Book, Issue 1, Consultative Committee for Space Data Systems, May
1992 or later.

Issue 1 May 1992viii

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

1 INTRODUCTION

1.1 Purpose

The purpose of this document is to explain the rationale of the Standard Formatted Data Unit (SFDU)
concept and outline the Structure and Construction Rules with the help of examples.

This document serves as a companion book to Reference [1], which gives a formal description of the
SFDU Structure and Construction Rules.

1.2 Document Organisation

This document is a tutorial. It is structured as follows:

• Section 2 presents the basic problems of data interchange and introduces the
concept used to address them.

• Sections 3 describes SFDU structuring and the basic structural building
blocks.

• Section 4 describes the methods of packaging data units within SFDU
products.

• Section 5 explains the techniques for delimiting data units.

• Sections 6.1 and 6.2 describe the two main structural units which can be used
in SFDU products, the Information Data Unit (Section 6.1) and the Description
Data Unit (Section 6.2).

• Section 7 states all the requirements which the SFDU concept has to satisfy
and gives a rationale for each requirement. It also provides a compliance
table to demonstrate the fulfilment of all the requirements.

• After descriptions of all aspects of the SFDU concept, Section 8 gives a
number of examples from real projects, which show how the SFDU is used
in practice.

• Annexes A and B present a complete summary of the acronyms and the
terminology used in this document;

• An index is supplied covering all the major terms in the document; in this the
first page referenced by the index points to the definition of the term.

In this report structure diagrams are used to explain some of the structures presented. The following
conventions are used in these diagrams:

• The item named to the left of the := symbol is the item being defined;

• The diagram on the right of the := symbol is the definition;

• A vertical branch point represents a choice;

Issue 1 May 19921

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

• A repetition is indicated by a loop back covering the object to be repeated.
If there are the symbols n<x next to the loop back, then it means the loop can
be repeated only zero to x number of times;

• The termination of each structure is represented by an o symbol.

For example:

Figure 1-1: Example Structure Diagram

In this example Item A is defined as:

A sequence of two items:

- The first is a choice between Item B and Item C or nothing.

- The second is one Item D.

If selected, Item B may be present from one to eight times.

The whole structure described may be repeated any number of times until the path
to the o symbol is selected.

Of course if any items on the right (B, C or D) contain an Item A, the definition is recursive.

The following names used in this document are registered trade marks: VAX, VMS, DECNET, UNIX,
MSDOS.

Issue 1 May 19922

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

2 BACKGROUND

2.1 The Problems of Data Interchange and Archiving

Information interchange is defined as the transfer of information on a system at one location to a
system at another location. In this report "information" means any type of knowledge that can be
exchanged and "data" refers to the representative forms of that "knowledge". In some instances, for
example, in mission operations, the systems interchanging information (e.g., the experiment on-board
a spacecraft and the experimenter at his laboratory or institute) in the interchange process have a
common view of the data. The problems of information interchange become primarily those associated
with identifying the source of the information (e.g., a particular experiment), and understanding any
additional information (e.g., quality control) that may have been added to the original data as it flowed
from source to destination.

In other instances, for example, in retrieving data from an archive, the source and destination systems
(e.g., a researcher’s system and the data archive) may never have shared a common view of the data.
In such cases it is imperative that a common view be established between them. The problems which
arise are:

• Determining the information location (where it resides) and its identification;

• Accessing the data (i.e., transferring it from its source);

• Interpreting or understanding the data.

The interchange of science information is particularly subject to these problems because the data is
long-lived, may have many diverse users, may require supplementary data to understand or process
it in a meaningful sense and may have relationships with other data. Furthermore, information
interchange often takes place between different types of computers with different operating systems
each of which may have, for example, different data representation conventions; in such cases it is
said that the computer environment is heterogeneous.

At present, a typical data management and processing system is dedicated to a particular flight
mission or project. Data is acquired, processed, shared to some level with other members of the
investigating team, and eventually archived. Such dedicated systems are usually implemented
specially for a project’s requirements. Further, documentation of the data and its formats may not be
complete and up-to-date since the investigators already have an understanding of their data which is
kept current by actively working with the data, maintenance of the processing software, etc.

This practice results in two major problems:

• A new information interchange data system must be implemented for each
mission. This is expensive.

• As a result of inadequate or out-of-date documentation, the reuse of data at
some future period by a researcher, who was not a part of the original
investigating team, will be made difficult or even impossible. Inadequate
documentation can also be a problem for the original investigators if they do
not work with the data for a period of time.

There is a trend for space and earth scientists to move away from traditional mission-oriented research

Issue 1 May 19923

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

activity towards inter-disciplinary investigations. This requires the integration of information from many
sources. Thus data interchange requirements are becoming more demanding. Furthermore, data
rates and volumes are also increasing, adding further importance to the need for efficient and
economical information interchange systems.

2.2 Overview of the Standard Formatted Data Unit (SFDU) Concept

The Standard Formatted Data Unit (SFDU) concept provides standardised techniques for the
automated packaging and interpreting of data products. It puts no constraint on the format of the user
data, and can thus accommodate standard formats developed by other organisations or user
communities. It operates in a heterogeneous environment.

The SFDU concept has been developed to address the problems discussed in Section 2.1. It offers
the following:

• A low overhead, internationally recognised data labelling scheme which
permits self-identification of data objects;

• Standard techniques for providing complete and unambiguous data
descriptions;

• Procedures for registration and administration of these data descriptions;

• Techniques for packaging labelled data objects into larger data products;

• Sufficient standardisation to allow the development of generic software to
support the retrieval, access, parsing and presentation of SFDU data objects,
while allowing those objects to have individual formats to satisfy particular
application and user needs.

The CCSDS has developed Recommendations which address these aspects and they are listed on
the Reference page of this report. This report primarily addresses the data labelling and data object
packaging which form the subject of the Recommendation on Structure and Construction Rules
(Reference [1]). The Structure and Construction Rules of Reference [1] govern the basic interchange
format of information in the SFDU domain. The examples in Section 8 show how the first four aspects
outlined above have been automated in practical applications. These examples, which are from real
projects, use software and thus demonstrate the feasibility of the fifth aspect; generic software.

2.3 General SFDU Usage

It is useful to consider two typical methods of using SFDUs. The first is ad-hoc data interchange, in
which human intervention and interpretation is the prime characteristic. In this case it is sufficient to
package data arbitrarily. The second is automated operational data interchange, in which most human
involvement has happened at the time an information system was being designed and implemented.
In this case, system preparation will involve interface negotiation, design and possibly the
establishment of local conventions, e.g. communication protocols, media types, etc.

Issue 1 May 19924

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

2.3.1 An Example of Ad-Hoc Data Interchange

A scientist is asked to send some time series data to another scientist, along with ancillary and catalog
data. The scientist uses various resources to decide how to do so, including this book and a generic
SFDU designer/generator.

The receiving scientist applies an SFDU parser to discover the structure of the received product.
Having some knowledge of the use of the classes and the meaning of hierarchical structures, the
scientist can gain an understanding of the data. For example, a catalogue attribute object has been
packaged with its associated image.

In this example, understanding has been aided by the structure of the SFDU, as interpreted by a
human.

2.3.2 An Example of Operational Data Interchange

For automated exchange of data products, we assume that the human is not in the loop except in an
operational role (computer operations, software support, quality control etc.). In this case the data
producers and receivers must agree on a number of things beforehand.

As an example of production usage, consider an automated catalogue and active archive system.
Several data producers have received telemetry data, and have done whatever is necessary to
generate their science products, which have been designed in advance. During the operational
phases of the mission, product generation software is in place which generally runs automatically,
usually with some support from human operators. Each of the data producers have their own data
requirements, which are likely to be qualitatively and quantitatively different. The receiving active
archive, on the other hand, will require certain common elements, perhaps including global attribute
data for each product, and local attribute data for each data object catalogued. Based on these
requirements, some general guidelines or rules are developed for the data products; the producers are
expected to adhere to the guidelines. They may be very tight or very loose, but the agreement
amounts to a local standard or convention.

The guidelines will need to include the allowable "shape" of the SFDU (e.g., if a single catalogue
attribute object must precede a number of application (primary data) data objects, does it apply to the
first or to all of the application data objects?, or are related data objects packaged together?, or are
they put in separate products?).

The guidelines must define the allowable contents of the objects within the LVOs of the SFDUs and
the semantics of the contents. There may be a range of data types available, or they may be strictly
limited. For example, a time series may be represented in double precision floating point or integer
form. One might allow either, if distinguishing information is somehow conveyed within the SFDU.
(The data object identifier (ADID) might serve, or one could use attributes in a catalogue attribute
object. In the latter case, the attribute must be known to the receiver.) As another example, if the
catalog objects are to be specified in a formal language such as PVL, the languages to be supported
must be agreed upon. Finally, it might be necessary to specify Data Entity Dictionaries to specify the
meaning of each data element.

The matters which must be addressed are summarized as follows:

• The organisation of the data objects within the SFDU product: what is their
order, how are they nested, which are optional, which are related, etc?.

• The contents of each data object.

Issue 1 May 19925

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Furthermore, before a receiver of a product can even begin to access the data, he must know the type
of medium/operating system used, and how to read the initial SFDU label. Once this header is read
he can navigate through the product, but an initial "sticky label" is required on the medium to get
started.

If it is not possible to obtain agreements from receivers as well as producers, as in the case of data
producers who do not know all of their future customers, the producer must carefully make decisions
and document them, so that all of the above information is available.

The CCSDS Panel 2 is considering means of standardising or providing registration for specifications
that address the above issues.

It is noted that the steps described above have always been necessary; the agreements on media,
product structure, data object content and format are normally documented in an Interface Control
Document, signed off by the product generating authority on the one hand, and the product receivers
on the other.

The SFDU concept provides automatable techniques for designing structure products, for labelling its
components and providing data descriptions, thus removing the heavy reliance of traditional systems
on paper documentation.

Issue 1 May 19926

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3 THE SFDU BASIC ELEMENTS AND SFDU STRUCTURING

This section describes the techniques that are used to build SFDUs. This includes the basic building
block, the higher level packaging structures and the methods of labelling and identifying each
component of the SFDU structure.

3.1 SFDU Building Blocks - The Label-Value-Object

The basic SFDU building block is comprised of a LABEL field and a VALUE field, and is referred to
as a Label-Value-Object (LVO). This structure is the fundamental structural element used to build
SFDUs. The LVOs themselves are made up of a sequence of octets.

In the SFDU approach, data exchanged between open (independent) data systems are tagged with
a LABEL, as shown in Figure 3-1.

Figure 3-1: LABEL-VALUE Encoding Structure

The LABEL contains the following sub-fields:

• An identifier of the format and meanings of all the other LABEL sub-fields;

• An identifier of the description of the format and meaning of the data in the
VALUE field;

• An identifier that gives an indication of the type of data in the VALUE field;

• The necessary information required to delimit the VALUE field.

A complete definition of the sub-fields of the LABEL is given in Section 3.4.

The VALUE field may contain any form of data that can be described by a user defined data
description or by a CCSDS recognised data description. The method used to delimit this field, and
a description of the data in this field, are identified through the associated LABEL sub-field.

The optional marker field is required by some delimitation techniques to delimit the VALUE field (See

Issue 1 May 19927

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Section 5.2).

3.2 SFDU Structuring

SFDU data products are constructed from the basic LVO in one of two ways. If the VALUE field of
the LVO contains purely user data it is termed a "Simple LVO". If, on the other hand, the VALUE field
of the LVO contains purely LVOs, it is termed a "Compound LVO".

SFDU products are always packaged in a special kind of Compound LVO called the Exchange Data
Unit (EDU). Only EDUs may be interchanged between systems. Special types of Compound LVOs
are also provided to package together application data (the Application Data Unit (ADU)) and data
description data (the Description Data Unit (DDU)).

The CCSDS defined categories of Simple and Compound LVOs, which vary depending upon the type
of data or LVOs respectively that they contain, are detailed in the following sections.

3.2.1 Simple LVOs

Data in a Simple LVO may be viewed as belonging to one of the following categories:

• Application data; that is the data which is of primary interest (typically
measurements or data derived from measurements);

• Supplementary data; that is data that is considered to enhance the
understanding of the associated data;

• Data description information, telling how the application data are formatted,
including such details as size of the data fields, numerical or other
representations used and the meanings of the fields;

• Data cataloguing and/or data production information, giving certain overall
attributes of the data, for example, date of generation, instrument used,
instrument location, general information about the way the data was collected,
relayed or processed, etc .

Any one of these types of data may be contained in the VALUE field of a single LVO. The structure
of a Simple LVO is described in Figure 3-2.

Figure 3-2: Structure Diagram of a Simple LVO

3.2.2 Compound LVOs

Compound LVOs are LVOs which contain within their VALUE field a sequence of one or more LVOs,
each of which can be a Simple or Compound LVO itself. LVOs that are contained in the VALUE field
of a Compound LVO are deemed to be one "Structure Level" lower than that of the containing
Compound LVO. If any of these contained LVOs are themselves a Compound LVO then they will

Issue 1 May 19928

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

themselves contain a sequence of LVOs; this sequence is at the next lower "Structure Level". This
process may continue indefinitely leading to a succession of structure levels. This process is the way
in which LVOs are nested. There are no rules dictating the number or order of Compound and Simple
LVOs within a data product, except that there must be at least one Simple LVO at the lowest structure
level of any Compound LVO (i.e., a Compound LVO cannot have a VALUE field of zero length). The
structure of a Compound LVO can be described by Figure 3-3.

Figure 3-4 shows two examples of packaging LVOs within the VALUE field of LVOs.

Figure 3-3: Structure Diagram of a Compound LVO

There are three types of Compound LVOs; there is the Exchange Data Unit (EDU), and two particular

Figure 3-4: Examples of Packaging LVOs within LVOs

 >Compound
 >Simple LVO >S
 User Data LVO User Data

The simplest form
of EDU >S

 User Data

 >C

A more complex > >C
EDU

 >S
 User Data

S = Simple LVO
C = Compound LVO

 >S
 User Data

structures which must be packaged within an EDU. These are the Application Data Unit (ADU), which
explicitly does not contain any data description information, and the Description Data Unit (DDU),
which can contain only data description information.

Issue 1 May 19929

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3.2.2.1 Exchange Data Unit (EDU)

Typically an SFDU data product consists of not only the data (e.g., an image, a set of measurement
samples), but also all the supporting metadata that is needed to understand the data product. Any
type of data may be contained within an Exchange Data Unit (EDU). SFDU data MUST be exchanged
in the form of an EDU.

For example, the following could be packaged within an EDU:

• Information on the production of the product;

• Catalogue data pertaining to the product (e.g., platform ID, data type, time
span);

• A number of data instances comprising of application data and supplementary
data (e.g., images and image coordinates);

• A number of data descriptions that describe each of the application data
formats and the supplementary data formats.

3.2.2.2 Application Data Unit (ADU)

The purpose of an ADU is to package application data instances (e.g., measurement samples)
together with any necessary ancillary data (e.g., sampling rate) and identification data (e.g., catalogue
information), and to explicitly exclude any data description information. Typically an ADU will be used
to "subset" a set of application data within an EDU. Software may be designed so that data stored
within an ADU is directed towards one particular processing task, which selects the ADUs out of the
data structure and skips over any others. Several such units typically appear within a data product.
An ADU must always be packaged within an EDU. An example of the use of ADUs is shown in

Figure 3-5.

Figure 3-5: Example of the Use of ADUs

Issue 1 May 199210

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3.2.2.3 Description Data Unit (DDU)

A Description Data Unit is characterised as follows:

• It carries the description of a data object (typically syntactic information such
as the format of a sample, and semantic information such as the name and
units of the components of the sample);

• It explicitly links the data description to the data object to which it applies;

• It does not include any application data instances.

Like an ADU, a DDU must always be packaged within an EDU. Figure 3-6 shows a DDU that could
be used to describe the data within the ADU shown in Figure 3-5. This data description data can be
packaged together with the application data or held separately.

The underlying idea of the DDU is that a user system receiving a DDU knows that it only contains data
descriptions, so that it can be directly routed to, for example, a processor for data descriptions.
Equally the user system knows it need not look for application data in a DDU.

Figure 3-6: Example of the Use of DDUs

3.3 EDU Structure Diagram

The four structures that have been illustrated in the previous section are the Simple Label-Value-Object
(LVO), the Exchange Data Unit (EDU), the Application Data Unit (ADU) and the Description Data Unit
(DDU). These structures may be packaged together as indicated in the structure diagram of
Figure 3-7 (overleaf). Not all the components on the right of the := have to be included in all EDUs,
but at least one Simple LVO must be present. The packaging is hierarchical with the highest level
object being an EDU.

Issue 1 May 199211

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3.4 LVO LABEL FIELD SPECIFICATIONS USED IN SFDUS

Figure 3-7: Structure Diagram of an EDU

This section specifies the three versions of the LVO LABEL defined in the current SFDU
Recommendation (Reference [1]) relating to the SFDU Structure and Construction Rules. The version
of the LABEL is indicated by octet 4 of the LABEL in all cases. This sub-field of the LABEL is called
the Version ID . A more complete definition of all the sub-fields appears below.

(An SFDU product must be immediately identifiable as falling within the CCSDS/SFDU domain;
therefore octets 0 to 3 must contain the string CCSD, which is the Control Authority Identifier (CAID)
for the CCSDS. Therefore, even though the Version ID dictates the format of the LABEL, it may not
appear prior to the string CCSDand thus appears in octet 4.)

The VALUE field may contain any form of data that can be described by a data description. The
extent of this field, and a description of the data in this field, are identified through the associated
SFDU LABEL.

Only Version IDs = "1", "2" and "3" (hereafter referred to as Versions 1, 2 and 3 respectively) are
defined in the current Recommendation (Reference [1]). These correspond to a 20 octet LABEL of
the general form shown in Figure 3-8.

Figure 3-8: CCSDS LABEL Specification - Version ID = 1, 2 and 3

Issue 1 May 199212

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

For Version IDs = 1, 2 and 3 the characters of the Restricted ASCII (RA) set are the only ones
permitted in the sub-fields of the first 12 octets of the LABEL (Restricted ASCII is all the uppercase
letters (A-Z), and the numbers (0-9) from the ASCII character set, see Reference [1], Annex D for a
definition of the decimal codes).

For all three Version IDs, the following sub-fields have common meaning and values.

• Control Authority Identifier (CAID) : The Control Authority Identifier contains
the identifier of the organisation that has assigned the DDID to the information
describing the VALUE field. This Control Authority Office has the
responsibility for maintaining this data description information and supplying
it to user. The CAID is the first part of the ADID.

• Data Description Identifier (DDID) : The Data Description Identifier contains
the identifier of the data description information held at the Control Authority
Office, as identified by the CAID. The DDID is the other part of the ADID.

• The combination of the CAID and the DDID is called the Authority and
Description Identifier (ADID) . The ADID uniquely identifies the data
description information that applies to the associated VALUE field.

• Class ID : The Class ID indicates the kind of data contained in the VALUE
field following the LABEL. The Class ID must be selected from those
approved by the CCSDS. A list of approved Class IDs is found in Section
3.4.1.

• Spare : This is a spare octet which is set to the RA numeric character 0
(zero).

An overview of the sub-fields which change between the different versions is given in Table 3-1.

The value contained within the Delimitation Parameter sub-field is used to complete the delimitation

Table 3-1: Summary of the Version ID Dependent Sub-fields in the LABEL

Version
ID

Delimitation
ID

Delimitation
Parameter Meaning

Delimitation Parameter
Representation

1 0 (zero) Length 8 octet RA decimal integer

2 0 (zero) Length 8 octet 64 bit binary integer

A Length 8 octet RA decimal integer

B Length 8 octet 64 bit binary integer

3 S Marker completion pattern 8 printable ASCII characters

C Number of contiguous EOFs 8 octet RA decimal integer

E Number of sequential EOFs 8 octet RA decimal integer

F No delimitation parameter
required

Fixed 8 octet RA string 00000001

technique.

Issue 1 May 199213

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3.4.1 Overview of Class Identifiers

This section summarises the meaning of the Class IDs which may be used in all versions of LVO
LABELs. The Class ID provides a general indication of the type of the data contained in the LVO
VALUE field. The full description of the format of the VALUE field is given in the data description
accessed via the ADID.

The Class IDs can be split into three basic categories, as shown in Figure 3-9. The Structure Classes
handle the packaging of LVOs, the Service Classes provide CCSDS service mechanisms and the Data
Classes contain the actual user data.

An application can assign further meanings to some of the classes. For example, the application may

Figure 3-9: SFDU Class ID Breakdown

decide that it will distinguish between scientific and housekeeping data by packaging the former inside
LVOs with Class ID = I and the latter inside LVOs with Class ID = S.

In addition certain LVOs, such as those with Class ID = K, relate to other LVOs. For example, a class
K LVO may contain the title, author and date of publication of the LVO(s) following with Class ID =
I. The scope of this association is left as an application decision (e.g., does a class K LVO at the
highest level of a product apply to all the included data objects or only a subset?).

All such application specific matters must be fully described if the LVOs exchanged are to be properly
interpreted. These descriptions must be available to all users of the LVOs concerned (as described
in Section 6.2).

Issue 1 May 199214

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3.4.2 Overview of CCSDS Defined ADIDs

There are two types of permitted ADIDs:

1. Those defined by the CCSDS, appearing in CCSDS Recommendations, and
beginning with the four RA characters CCSD. These are referred to as
CCSDS ADIDs. When using a Structure or Service Class ID, a CCSDS ADID
must be used whenever possible in order to maximise universal access to the
corresponding LVOs;

2. Those defined by SFDU users, typically through data description registration
with a Control Authority Office (See Reference [3]). These are referred to as
User ADIDs.

While it is expected that most ADIDs will be assigned by Control Authority Offices to user-generated
data descriptions, there are a number of standard descriptions that have been defined by the CCSDS
for general use. These descriptions are assigned CCSDS ADIDs and they appear in approved
CCSDS Recommendations. The CCSDS ADIDs currently identified as being associated with the
structure and construction rules are defined in Reference [1] and are summarised in Table 3-2. The
CCSDS ADIDs that appear to be missing from the table (i.e., CCSD0002, CCSD0006, CCSD0007 and
CCSD0008) can either be found in other CCSDS Recommendations or correspond to specifications
that are under development.

Table 3-2: Summary of CCSDS Defined ADID Specifications

ADID Value Field Definition

CCSD0001 VALUE field contains one or more LVOs

CCSD0003 VALUE field contains several "parameter=value" statements that optionally
label external data objects before logically including them in the current
structure

CCSD0004 VALUE field contains one or more "parameter=value" statements that identify a
data description package and optionally reference other metadata objects

CCSD0005 VALUE field contains one or more LVOs, forming a Description Data Unit
(DDU)

CCSD0009 VALUE field contains one or more LVOs, forming an Application Data Unit
(ADU)

3.5 Combining ADIDs and Class IDs

All LVO labels, by definition, include an ADID and Class ID combination. The purpose of this section
is to summarise the possible combinations.

There are two categories of permitted ADID and Class ID combinations, these are defined as follows:

Issue 1 May 199215

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

1. CCSDS defined usage : These combinations occur only with CCSDS ADIDs
and correspond to cases where a particular CCSDS ADID specification has
been specifically designed by the CCSDS to support a given Class ID. Where
they exist such combinations are the preferred form;

2. User defined usage : These combinations occur only with User ADIDs, for
which the User ADID must support the CCSDS defined usage of the Class ID.

Any other combinations of ADIDs and Class IDs are not permitted.

Table 3-3 summarises the ADID and Class ID combinations. It should be pointed out that the only
reason for using a User ADID with a Structure or Service Class ID would be when the existing CCSDS
ADIDs for these Class IDs do not meet the user’s particular needs. In such a case, it is clear that
these needs will not be supported through immediate universal recognition by the standard parsing
tools.

To summarise, Table 3-4 (overleaf) lists the CCSDS defined combinations of ADIDs and Class IDs that

Table 3-3: ADID and Class ID Combination Categorisations

ADIDs
Class IDs

Z F U R C I S D E K V

CCSD0001

CCSD0002 †

CCSD0003

CCSD0004

CCSD0005

CCSD0006 ‡

CCSD0009

User defined ADIDs

† English Text, see Reference [4] = Permitted
‡ PVL, see Reference [2] = Permitted if the ADID identified

data description does not
contradict the Class ID identified
functionality

= Not permitted

are important to the structure and construction of SFDUs as defined in Reference [1]. The fact that
there is currently only one CCSDS ADID for each of the Structure and Service Classes is purely a
state of the current Recommendation. More ADIDs may be developed for use with these Class IDs
as and when the requirements arise for different implementations of the Class ID specified
functionality.

Issue 1 May 199216

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Table 3-4: CCSDS Defined Combinations of Class IDs and ADIDs

Class ID ADID Permitted Instance of:

Z CCSD0001 Exchange Data Unit (EDU)

F CCSD0005 Description Data Unit (DDU)

U CCSD0009 Application Data Unit (ADU)

R CCSD0003 Replacement Service

C CCSD0004 Data Administration Service

Note: In order to be a legal SFDU data product, the first label of any
SFDU data products must have a Class I D = Z and an ADID = CCSD0001.

Issue 1 May 199217

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

4 PACKAGING TECHNIQUES

Note: In the following diagrams the LVOs are shown in a stylised form, with only the
information necessary to understand the concepts being presented. For
example, in Figure 4-1, only the CAID, Class ID and DDID are indicated in the
LABELs (L), although in reality all the other sub-fields of the LABELs are
present.

4.1 Envelope Packaging

The idea is shown in Figure 4-1, which shows the simplest case, in which an EDU contains one LVO
of application data, which could, for example, be a major frame of telemetry data. A more elaborate
example, showing the envelope packaging of a "bundle" of telemetry minor frames is shown in
Figure 4-2. Minor frames are bundled into an EDU for delivery of a partial major frame, so users can
begin processing before the complete major frame is available.

Figure 4-1: Envelope Packaging

L CCSD Z 0001

L ESOC I 1230

V

 Telemetry
 Major Frame

V

Figure 4-2: More Complex Envelope
Packaging

L CCSD Z 0001

L ESOC I 1234

V Telemetry Minor Frame 1

L ESOC I 1234
V

V Telemetry Minor Frame 2

L ESOC I 1234

V Telemetry Minor Frame 3

4.2 Referencing Techniques - the Replacement Service

A referencing technique is provided to include data objects in a product even if those units are not
stored contiguously with the rest of the product. This technique is called the "Replacement Service",
because it allows logical inclusion of physically separate data objects (e.g., files) into SFDU products.
The technique uses a class R LVO (the referencing LVO). This contains the reference information in
its VALUE field in the form of Parameter Value Language statements (Reference [2]). The general
concept is shown in Figure 4-3 (overleaf), where the class R LVO is envelope packaged in an EDU.
It references a file called CCSDIMGcontaining an LVO with image data in its VALUE field.

Issue 1 May 199218

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

A more complicated case is shown in Figure 4-4 in which:

Figure 4-3: The Replacement Service - Referencing a File Containing a LVO

File with name CCSDIMG
L CCSD Z 0001 >

L NJPL I 2233
L CCSD R 0003

V
REFERENCETYPE=$CCSDS1;

V LABEL=ATTACHED; V
REFERENCE=CCSDIMG;

• The data in the referenced file is unlabelled and thus a LABEL has to be
provided by the referencing data object (the class R LVO);

• Other LVOs are packaged together with the class R LVO to form quite a
complex product;

• The provisional referencing environment $CCSDS1is being used. $CCSDS1
is a basic filename.ext filenaming convention, with filename limited to
a maximum of 8 characters and ext limited to a maximum of 3 characters.
(For further discussion of referencing environments see Section 4.2.1.1).

• The LABEL supplied by the LABEL statement specifies that the ADID =
ESOC1122, Class ID = I and Delimitation ID = F (Shared EOF).

The class R LVO has a CCSDS defined ADID = CCSD0003. The CCSD0003 specification describes

Figure 4-4: The Replacement Service - Referencing an Unlabelled Data Object in a File

L CCSD Z 0001

L ESOC K 1123

 Catalogue
V data

L ESOC V 0860

 Production File with name IMAGE.ERS
V data >

V
L CCSD R 0003

REFERENCETYPE=$CCSDS1;
LABEL=ESOC3IF0112200000001;

V REFERENCE=IMAGE.ERS;

L ESOC S 1214

 Supplementary
V data

a Simple LVO VALUE field for specifying parameters for use by the CCSDS replacement services
provided by a class R LVO (the Referencing LVO). The Parameter Value Language, PVL (See
Reference [2]), is used to specify the necessary parameters.

Issue 1 May 199219

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Three parameters (REFERENCETYPE, LABEL and REFERENCE) are specified by this ADID. They
perform the following three tasks:

1. Define the name (REFERENCETYPE) of a referencing environment that is to
be used to access external data object(s) from the Referencing LVO, for
example, the filenaming convention and the type of data storage medium;

2. Provide a means to optionally add an LVO LABEL (LABEL) to external data
object(s);

3. Provide a pointer (REFERENCE) to the start of external data object(s) within
the specified referencing environment.

The three PVL statements that correspond to these three tasks are described below. The permitted
ordering of these three statements in any one VALUE field is defined by Figure 4-5.

In the statement descriptions below any parameter names or values shown in upper case are

Figure 4-5: Structure Diagram of the PVL Statements within an LVO with ADID = CCSD0003

keywords, whilst lower case is used to indicate user specified values. All keywords in a CCSD0003
VALUE field must be expressed in upper case.

a. REFERENCETYPE=refenv;
The refenv value names the referencing environment to be used.
If refenv begins with the $ character then it names a provisional
CCSDS defined referencing environment (Section 4.2.1.1 describes
provisional CCSDS defined referencing environments), otherwise it
names an approved CCSDS defined referencing environment.

b. LABEL=string;
The string value allows an LVO LABEL field to be logically added
to the beginning of the external data object(s). If string is the
keyword ATTACHEDthen it means the external data object(s) shall
have an LVO LABEL at the beginning and do not require a further
LABEL. Otherwise, string shall conform to an LVO LABEL
specification that is composed of printable ASCII characters (decimal
codes 32 to 126).

c. REFERENCE=(name_1, name_2, . . . name_n);
Each name_x specifies the beginning of one or more external data
objects within the defined referencing environment. The parentheses
are optional if there is only one name_x.

The following should be noted concerning Figure 4-5:

i. There shall be one, and only one, REFERENCETYPEstatement. This shall be
the first statement;

Issue 1 May 199220

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

ii. There shall be at least one REFERENCEstatement;

iii. There shall be one LABEL statement before the first REFERENCEstatement;

iv. There shall be no more than one LABEL statement between any two
consecutive REFERENCEstatements.

v. A LABEL statement can apply to many REFERENCEstatements. The most
recent LABEL statement will be used;

vi. The last statement in a VALUE field shall be a REFERENCEstatement.

The following rules apply:

A. External data objects are referenced in the order of the REFERENCE
statements. If a REFERENCEstatement specifies more than one external data
object, then these external data objects are referenced in the order that they
appear in the REFERENCEstatement.

B. If a REFERENCEstatement refers to more than one external data object, then
the given LABEL applies to each of these external data objects.

C. Each external data object terminates when the VALUE field delimited by the
first LABEL (whether attached or supplied by a LABEL statement) has been
completed.

D. Each external data object shall comply with the structure rules applying at the
point where the external data object was referenced. Figure 4-6, shows a
DDU which contains the mandatory class C LVO and then a class R LVO.
The class R LVO references two files, FILE1.DAT that contains a labelled
class D LVO (a syntax description) and FILE2.DAT that contain a labelled
class E LVO (a semantic description). The two LVOs are logically included
in the DDU thus forming a legal EDU structure.

Figure 4-6: Following the Structure Rules when Referencing LVOs

L CCSD Z 0001 FILE1.DAT
>

L CCSD F 0005 L NJPL D A002

L CCSD C 0004
V Syntax

V V ADIDNAME=NJPLA236; description
V

L CCSD R 0003

REFERENCETYPE=$CCSDS1; FILE2.DAT
V LABEL=ATTATCHED; >

REFERENCE=FILE1.DAT; L NJPL E B012
REFERENCE=FILE2.DAT;

V Semantic

 description

Issue 1 May 199221

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Meanwhile Figure 4-7, shows another DDU with a similar structure. The
mandatory class C LVO is present and then also the class R LVO. The class
R LVO references two files, FILE1.DAT that contains a labelled class D LVO
(a syntax description) and FILE2.DAT that contain a labelled class I LVO
(application data). The class D LVO can be legally included, but it is illegal
to have class I LVOs (application data) within a DDU, therefore the EDU
structure shown is illegal

E. The delimitation of the Referencing LVO, and the LVOs within which it is

Figure 4-7: Example of an ERROR due to NOT Following the Structure Rules when
Referencing an LVO

L CCSD Z 0001 FILE1.DAT
>

L CCSD F 0005 L NJPL D A002

L CCSD C 0004
V Syntax

V ADIDNAME=NJPLA236; description
V

V L CCSD R 0003

REFERENCETYPE=$CCSDS1; FILE3.DAT
V LABEL=ATTATCHED; >

REFERENCE=FILE1.DAT; L NSSD I 3332
REFERENCE=FILE3.DAT;

V Application

 data
>

An illegal type of data (application
data) to reference from within a DDU

contained, is not affected by the external data objects (e.g., the octet count
of a length delimited Referencing LVO does not take into account the octets
of any external data object(s)).

4.2.1 The REFERENCETYPE Statement

The REFERENCETYPEstatement specifies the referencing environment by name. The convention of
using a $ as the first character of this name is intended to allow:

• The use of $CCSDS1- $CCSDSnto indicate that the referencing environment
to be used is a proposed CCSDS developed referencing environment. Two
such proposed referencing environments are currently defined.

• When such a proposed CCSDS defined referencing environment has been
fully tested and evaluated, it will be incorporated into a CCSDS
Recommendation. This means that a fully compliant CCSDS parser for a
VALUE field with ADID = CCSD0003 must be able to understand the name_x
values given in the REFERENCEstatement, and access the necessary external
data objects. Once the referencing environment is incorporated in a CCSDS

Issue 1 May 199222

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Recommendation then its name will not have a $ at the beginning, i.e., it is
an approved referencing environment.

4.2.1.1 Proposed Referencing Environment Specifications

The following two proposed CCSDS defined referencing environments have not been fully evaluated
or tested at the time of issue of this Report. It is intended that these two proposed referencing
environments be used. Assuming that they fulfil the needs of the user community, they will be
approved in the form of a CCSDS Recommendation. The existence of only two proposed referencing
environments at present should not be considered a restriction for the future. New reference
environments can be introduced as user needs and technology evolve.

4.2.1.1.1 Basic Referencing Environment - $CCSDS1

$CCSDS1is the most basic referencing environment. It specifies a canonical filenaming convention
that maps directly to all current major operating system filenaming specifications. This means that any
SFDU products which use this referencing environment should be easily transferable across media
with no truncation or clashes of filenames involved.

The specification is based on a simple "8 dot 3" filename, that is, a filename of maximum 8
characters with an optional extension of maximum 3 characters. These two segments of the
filename may use the * and ? wildcards to represent the remainder of their segment and a single
character respectively. A directory path can also be specified. There is a maximum of 8 directory
levels (separated by a / (forward slash)), each being a maximum of 8 characters long. If the directory
path starts with / then it is relative to the highest level directory of the mounted volume or file system
containing the reference LVO; if no leading / is present then it is relative to the location of the
referencing LVO. The structure diagram in Figure 4-8 illustrates the described specification (for the
complete specification of the $CCSDS1referencing environment see Reference [1], Annex F.1).

Figure 4-8: Structure Diagram of $CCSDS1 Name Specification

Issue 1 May 199223

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Table 3-5 shows a number of examples or how a $CCSDS1specified filename would translate to
various popular filenaming conventions used by commercial operating systems:

Table 3-5: Examples of $CCSDS1 Referencing Environment Filenames

$CCSDS1 filename UNIX filename MS-DOS filename VAX VMS filename

FOOBAR.DAT FOOBAR.DAT found in
the same directory as
the Referencing LVO

FOOBAR.DAT found in
the same directory as
the Referencing LVO

FOOBAR.DAT; found in
the same directory as
the Referencing LVO

FOOBAR FOOBAR found in the
same directory as the
Referencing LVO

FOOBAR. found in the
same directory as the
Referencing LVO

FOOBAR.; found in the
same directory as the
Referencing LVO

FOOBAR. An ILLEGAL $CCSDS1filename (if "." used then an extension
must be present)

MYDIR/FOOBAR.DAT FOOBAR.DAT found in
the MYDIR/ child
directory of the directory
where the Referencing
LVO resides

FOOBAR.DAT found in
the MYDIR\ child
directory of the directory
where the Referencing
LVO resides

FOOBAR.DAT; found in
the [.MYDIR] child
directory of the directory
where the Referencing
LVO resides

\ADIR\FOOBAR.DAT An ILLEGAL $CCSDS1filename (only forward slashes permitted)

MYDIR/FOO.BAR.DAT An ILLEGAL $CCSDS1filename (only 1 . (dot) permitted in a
filename)

/YOURDIR/MYDIR/FOOBAR.DAT FOOBAR.DAT found in
the /YOURDIR/MYDIR/
directory off the root
directory of the volume

FOOBAR.DAT found in
the \YOURDIR\MYDIR\
directory off the root
directory of the volume

FOOBAR.DAT; found in
the [YOURDIR.MYDIR]
directory off the root
directory of the volume

mydir/foobar.dat An ILLEGAL $CCSDS1filename (only uppercase characters
permitted)

LONG_FOOBAR_NAME.DATA An ILLEGAL $CCSDS1filename (only 8 characters permitted in
the filename and 3 characters in the extension)

4.2.1.1.2 Extended Referencing Environment - $CCSDS2

This specification provides extensions to the $CCSDS1 specification for users who find the $CCSDS1
specification too restrictive. It maps directly to most major filenaming specifications, but is less portable
than $CCSDS1. Essentially it is the same format as $CCSDS1, the difference being the number of
characters that are permitted in each segment of the filename; each directory name is limited to
31 characters while the filename plus extension has a combined maximum of 30 characters (for
the complete specification of the $CCSDS2referencing environment see Reference [1], Annex F.2).
All the examples shown in Table 3-5 apply also for $CCSDS2, except that for $CCSDS2the last
example is legal as the filename segments are within the permitted lengths.

Issue 1 May 199224

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Table 3-6 shows some examples of how the wildcarding features are applied (this is the same for both
referencing environments). It shows a sample directory of files in the order that they are encountered
by the operating system and returned to SFDU service software. On the right is the ordered list of
filenames valid upon applying the reference environment filenames on the left.

Table 3-6: Examples of Wildcards used in Referencing Environments

Files in sample
directory:

AAAA.DAT
ABCDE.DAT
FFGG

ABXDE.SYS
ABC
ABCDE.SYS

FOO
ABZDE.DAT
FOO.DAT

ABCDE
ABYYY.SAM

Filename specified Returned list of filenames

*.DAT AAAA.DAT ABCDE.DAT ABZDE.DAT

* FFGG ABC FOO ABCDE

FOO.* FOO FOO.DAT

AB*CD.DAT Illegal as the * wildcard must be the last character in a
filename or extension field

AB*.SYS ABXDE.SYS ABCDE.SYS

AB*/FOO.DAT Illegal as the * wildcard is not permitted in a directory
name segment

AB*.S* ABXDE.SYS ABCDE.SYS ABYYY.SAM

AB?CD.* ABCDE.DAT ABXDE.SYS ABCDE.SYS ABZDE.DAT

AB?* ABC ABCDE

AB*?.DAT Illegal as the * wildcard must be the last character in a
filename or extension field

??? FOO ABC

Issue 1 May 199225

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

5 DELIMITATION TECHNIQUES

5.1 Delimitation By Length

In delimitation by length the length of the LVO is explicitly supplied in the LABEL of the LVO. This
delimitation technique is intended for use when the size of the product is clearly known at the time of
generation, and it is known that the transfer method will not add or remove any octets from the
product. The technique also allows more accurate error checking than a number of other techniques,
as if any one octet is accidently removed or added to the product then the nesting of the LABELs will
clearly show this, i.e., a nested LVO will be completed either too soon or too late relative to a higher
structure level.

Note: In the following diagrams a further parameter appears in the schematic of the
LVO LABEL, namely the Delimitation Parameter, e.g.

L CCSD Z 0001 L1

corresponds to an LVO LABEL with CAID=CCSD, Class ID=Z, DDID=0001
and a Delimitation Parameter=L1. The Version ID in this example is assumed
to be either "1", "2" or, "3" with a Delimitation ID = "A" or "B".

Delimitation by length may be used when:

Figure 5-1: Schematic of Length Delimitation

L CCSD Z 0001 L1

L NJPL K 3301 L 2

V Value 2 L 2

V L1

L NJPL I A6B0 L 3

V Value 3 L 3

L1=(L 2+20)+(L 3+20) in octets

• The total length of the unit or
product is known;

• All the entities are physically
stored sequentially on the same
media.

It is illustrated in Figure 5-1. Two Simple LVOs
(ADID = NJPL3301 and ADID = NJPLA6B0) are
"enveloped" within an outer LVO. Note that the
length sub-field of each LABEL encompasses its
VALUE field. The VALUE fields of the inner LVOs
are simply VALUE fields 2 and 3 while that of the
outer LVO (VALUE field 1) is the combined
lengths of the inner LVOs including their two
LABELs. Delimitation by Length is well suited for
building relatively small data products which can be buffered prior to output.

This technique is realised as follows:

• Using length, encoded in Restricted ASCII, i.e.:

- Version 1, e.g. CCSD1Z00000100001024
or

- Version 3, Delimitation ID = A e.g. CCSD3ZA0000100001024

Issue 1 May 199226

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

• Using length, encoded in binary, i.e.:

- Version 2 e.g. CCSD2Z000001nnnnnnnn
or

- Version 3, Delimitation ID = B. e.g. CCSD3ZB00001nnnnnnnn

Binary encoding permits lengths up to 264-1 octets, whereas RA encoding only permits lengths up to
108-1 octets. Obviously then, binary encoding is useful for large LVOs, whereas for any LVO shorter
than 108-1 octets RA encoding is preferable for reasons of convenience and readability.

5.2 Other Delimitation Techniques

Other delimitation techniques are available which do not require the length of a product to be explicitly
stated. These are useful for very large products or when the length of the product is not known at the
time the first LABEL is generated (see Section 7.1.2 for further discussion).

These other delimitation techniques fall into two categories:

• Marker Delimitation, in which an explicit end marker (of a CCSDS defined
format) is used to indicate the LVO end.

• End-of-File (EOF) Delimitation, in which the EOF services of the file system
used are exploited.

These delimitation techniques are only available for Version ID = 3.

Note: In the following schematic diagrams a further parameter is shown in the
LABEL of the LVO, namely the Delimitation ID. Within Version 3 LABELs
this is used to indicate how the Delimitation Parameter sub-field is used, e.g.

L CCSD Z S 0001 ABABCDCD

corresponds to an LVO header with CAID=CCSD, Class ID=Z, Delimitation
ID=S, DDID=0001 and a Delimitation Parameter = ABABCDCD. The Version
ID in this example is assumed to be "3".

Version 3 uses the Delimitation ID octet (octet 6) of the LABEL to denote the delimitation technique
to be used. These "other" delimitation techniques are provided to cover the cases when the length
of the data object is not known. The list of specific values of the Delimitation ID octet and their
corresponding delimitation techniques is contained in Table 3-7 (overleaf). These techniques use, as
necessary, the value contained within the Delimitation Parameter sub-field to complete the delimitation
process.

Issue 1 May 199227

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

5.2.1 Delimitation by Marker Pattern - Delimitation ID = S

Table 3-7: Delimitation IDs

Delimitation ID Delimitation Technique

A Length (specified in ASCII)

B Length (specified in binary)

S Marker Pattern

E Sequential End-of-File

C Contiguous End-of-File

F Shared End-of-File

Delimitation by Marker Pattern employs a twenty octet marker pattern to indicate the end of the VALUE
field. This delimitation technique is intended for use when the length of the VALUE field cannot be
determined at the time of generation of the LABEL, or when transfer protocols or other processing may
change the actual length of the LVO. Therefore an in-line 20 octet marker pattern is inserted when
the VALUE field is complete. The first twelve octets of this marker pattern is a fixed pattern and must
be ’CCSD$$MARKER’; the remaining eight octets are user specified in the Delimitation Parameter sub-
field of the LABEL. Thus, the marker pattern has the following format:

CCSD$$MARKERxxxxxxxx

The eight octet xxxxxxxx part of the marker pattern is the user specified part and can be any
printable ASCII characters (decimal codes 32 to 126).

Delimitation by the marker pattern technique works in two ways, depending upon whether the LVO
being delimited is a Simple or Compound LVO:

1. Explicit Marker Pattern Searching

Figure 5-2: Example of Delimitation by
Marker Pattern of a Simple LVO

L CNES I S 0452 ABABCDCD

:
:
:
V
:
:

CCSD$$MARKERABABCDCD

(Simple LVOs)

With Simple LVOs (i.e., LVOs with Class
ID = I, S, K, V, D, E, R or C), the end of
the VALUE field is determined by carrying
out an octet-by-octet search of the VALUE
field until a twenty octet marker pattern,
with the last eight octets the same pattern
as that specified in the LABEL, is
encountered. Figure 5-2 illustrates this
case with an example of a class I LVO,
where the user-specified part of the marker
pattern is the ASCII string ABABCDCD.

2. Navigation Through LABELs (Compound LVOs)

With Compound LVOs (i.e., LVOs with Class IDs = Z, F or U), successive LVOs contained
within the VALUE field of the enveloping LVO are delimited and processed until a marker and
not an LVO LABEL is encountered. Thus in this case the technique becomes a pairing or

Issue 1 May 199228

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

parenthesis matching technique. Although the user-specified pattern is not needed for pattern
matching, as in case (1), it is useful for readability and error checking. Figure 5-3 shows two
examples, the one on the left has a Compound LVO in which the Delimitation Parameter sub-
field contains the name WINDSCAT, standing for Wind Scatterometer. The LVOs in this
particular data object contain measurements from such an instrument, so the Delimitation
Parameter sub-field performs a useful documentation function as well as allowing a cross-
check that the LABEL and associated marker pattern have been correctly matched. The
Simple LVOs in the VALUE field of the Compound LVO have Version IDs = 1 and 2, i.e., they
are length delimited. The example on the right is a similar structure, except that one of the
enclosed LVOs is delimited by marker pattern itself; this corresponds to case (1) in which a
search through the VALUE field of the class I LVO is made for the marker pattern
CCSD$$MARKERALTIMINF. This clearly shows the difference between the usage of marker
pattern delimitation in Simple LVOs and Compound LVOs.

Figure 5-3: Examples of Delimiting Compound LVOs by Marker

L CCSD Z S 0001 WINDSCAT L CCSD Z S 0001 ALTIMETR

: L GSOC K 0035 (Ver "1") : L GSOC K 0041 (Ver "1")
: :
: :
: V : V
: :
V V
: L GSOC S 2241 (Ver "2") : L GSO C I S 0151 ALTIMINF
: :
: : V
: V :
: : CCSD$$MARKERALTIMINF

CCSD$$MARKERWINDSCAT CCSD$$MARKERALTIMETR

Figure 5-4 (overleaf) shows a more complex example of marker pattern delimitation, building on the
previous example. Here we have a product containing radar data from a spacecraft with a wind
scatterometer and an altimeter. Data from each instrument is packaged in LVOs with Class ID = Z
(EDUs) using marker pattern delimitation. The user-specified part of the marker patterns have the
values WINDSCATand ALTIMETR, incidentally as a side-effect providing a simple naming of each main
unit in the product. The "outer loop" of the nesting uses the same technique, this time the name
specified being RADARSAT. Obviously the technique can be extended to arbitrary numbers of
WINDSCATand ALTIMETR data units, a RADARSATmarker pattern being inserted as soon as the last
unit has been put in place. This technique is particularly useful for multi-instrument spacecraft, in
which operation time-lines for the various instruments differ and may change dynamically, according
to, for example, day to day changes in mission plans or real-time changes in operations.

Issue 1 May 199229

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 5-4: Example of Nesting of Marker Delimitation

L CCSD Z S 0001 RADARSAT

: L CCSD Z S 0001 WINDSCAT
:
: : L GSOC K 0035 (Ver "1")
: :
: :
: : V
: :
: V
: : L GSOC S 2241 (Ver "2")
: :
: :
: : V
: :
:
: CCSD$$MARKERWINDSCAT
V
: L CCSD Z S 0001 ALTIMETR
:
: : L GSOC K 0035 (Ver "1")
: :
: :
: : V
: :
: V
: : L GSOC S 2241 (Ver "2")
: :
: :
: : V
: :
:
: CCSD$$MARKERALTIMETR

CCSD$$MARKERRADARSAT

5.2.2 Delimitation by End-of-File (EOF)

End-of File (EOF) is a technique common to many storage systems and is widely used for delimitation
of data sets. However its physical implementation is specific to individual medium/operating systems.

Delimitation techniques that make use of EOF treat it conceptually without defining its implementation.
It is assumed that the creation and recognition of EOFs are operations which can be performed for
the specific medium/operating systems on which these LVOs are stored or transmitted.

Three different EOF delimitation techniques are available, covering the main common usages of EOFs
on sequential and random access media.

Issue 1 May 199230

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

5.2.2.1 Sequential End-of-File - Delimitation ID = E

In Sequential End-of-File delimitation an LVO is delimited by counting the number of EOFs
encountered following the LABEL until the count reaches the number specified by the RA formatted
integer value contained in the Delimiter Parameter sub-field of the LABEL. This applies
straightforwardly for a Simple LVO as shown in Figure 5-5, where a Simple LVO consists of two
sequential files, say on a magnetic tape.

For a Compound LVO, any EOFs encountered in the VALUE field of LVOs at lower structure levels

Figure 5-5: A single LVO Delimitation by 2 EOFs

> Delimitation by 2
sequential EOFs

L BNSC I E 1234 00000002

:
:
:
:
V

¤:¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤
:
:
:
:
:
:

¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤

or used to delimit LVOs at lower structure levels are ignored. Thus delimitation of the nested (or
contained) LVOs must be completed first. Of course, if these lower structure level LVOs are
themselves Compound LVOs also containing EOF delimited LVOs, the same procedure must be
applied.

Figure 5-6 (overleaf) shows how nesting of Sequential EOF delimited LVOs within a Compound LVO
works.

Delimitation by Sequential EOF is primarily intended for use with sequential access media, such as
tape. If delimitation by EOF is used on random access media (i.e., disks) in which the concept of
continuing beyond an EOF makes no sense, then only the RA character string 00000001 for the
Delimitation Parameter is meaningful.

Issue 1 May 199231

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 5-6: An Example of Nested EOFs

> 2 sequential EOFs

L CCSD Z E 0001 00000002

: L BNSC K E 0568 00000001 > 1 sequential EOF
:
: :
: :
: V
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤ <

¤:¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
:
: L BNSC I E 0668 00000002 > 2 sequential EOFs
:
: :
: :
: :
: :
: V
: ¤:¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤ <
: :
: :
: :
: :
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤ <

¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <

5.2.2.2 Contiguous End-of-Files - Delimitation ID = C

Delimitation by Contiguous End-of-Files is primarily intended for use with sequential access media,
such as tape. An LVO is delimited by a contiguous number of EOFs. This number is specified by an
RA formatted integer value contained in the Delimiter Parameter sub-field of the LABEL. This applies
straightforwardly to a Simple LVO as shown in Figure 5-7, where a Simple LVO consisting of two files
on a tape, is delimited by three contiguous EOFs. Note that in this example, the single EOF occurring
between the two files is ignored.

Figure 5-7: Delimitation by Contiguous EOFs of a Simple LVO

> 3 contiguous EOFs

L BNSC I C 4321 00000003

:
:
:
:
V

¤:¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ > IGNORED!
:
:
:
:
:

¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <

Issue 1 May 199232

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Similar rules apply when nesting Contiguous EOF delimited LVOs as for the Sequential EOF
delimitation technique; that is, any EOFs encountered in the VALUE field of LVOs at lower structure
levels or used to delimit LVOs at lower structure levels shall be ignored. Thus delimitation of the
nested (or contained) LVOs must be completed first, as shown in Figure 5-8.

For random access media (ie. disks) the same remark applies as for when delimiting by Sequential

Figure 5-8: An Example of Nesting Contiguous EOFs

> 3 contiguous EOFs
at structure level 0

L CCSD Z C 0001 00000003

: L BNSC K C 0568 00000003 > 3 contiguous EOFs
: at structure level 1
: :
: :
V V
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <
: ¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <
: ¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <

¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <

EOF, namely only a value of 00000001 for the Delimitation Parameter is meaningful. Since this type
of EOF delimitation also does not permit sharing of EOFs, this LVO, when used on random access
media, cannot be nested within any other LVOs.

5.2.2.3 Shared End-of-File - Delimitation ID = F

Delimitation by Shared End-of-File is primarily intended for use with random access media such as
disks, in which the concept of continuing beyond an EOF makes no sense. In delimitation by Shared
EOF an LVO is delimited by a single EOF. The EOF used in this type of delimitation remains available
for use by higher structure levels if they use this type of delimitation. This may be applied multiply,
that is, one EOF may be shared by any number of nested LVOs using this delimitation technique; they
will all terminate at the same EOF. The value within the Delimitation Parameter sub-field of the LABEL
must be set to the ASCII string 00000001 . This technique is illustrated by Figure 5-9 (overleaf).

Issue 1 May 199233

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 5-9: An Example of Use of Shared End-of-File Delimitation

> 1 shared EOF

L CCSD Z F 0001 00000001

: L ESOC V A 6700 00001024 > length delimited
:
:
: V
:
:
: L CCSD Z F 0001 00000001 > 1 shared EOF
:
: : L CCSD U F 0009 00000001 > 1 shared EOF
: :
V : : L ESOC K A 6784 00004096 > length delimited
: : :
: : :
: : : V
: : :
: V :
: : V L ESOC I F 6789 00000001 > 1 shared EOF
: : :
: : : :
: : : :
: : : V
: : : :
: : : :
: : : :

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ > all LVOs terminate here

5.3 Combining Delimitation Techniques

Delimitation techniques can be combined together. Only one rule is enforced when combining
Delimitation techniques, and this is that it is not permitted to nest LVOs which are delimited by
Sequential and Contiguous EOF within LVOs delimited by Shared EOF. Any other delimitation
techniques can be combined in any way which works, i.e, which result in meaningful products which
can be unambiguously interpreted.

For example, in an on-line data delivery system separate processes may produce a number of data
objects to be delivered as one larger product. Each data object is produced as one LVO, i.e., the
catalogue data (a class K LVO), the volume production data (a class V LVO) and the science data (a
class I LVO). These separate processes know how much data they are producing and so delimit their
generated LVOs by length (Version ID = 3, Delimitation ID = A). The overall data product building
process does not know the size of LVOs that it will have to package, and so writes the EDU LABEL
indicating a delimitation technique of Marker (Version ID = 3, Delimitation ID = S). After it has received
the single LVOs and written them after the EDU LABEL, it writes the end marker pattern. This is an
example of mixing Length and Marker delimitation techniques. The resulting SFDU product is shown
in Figure 5-10 (overleaf).

Issue 1 May 199234

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

An example of combining

Figure 5-10: Mixing Delimitation by Length and Marker

> Delimited by end marker
CCSD$$MARKERend_prod

L CCSD Z S 0001 end_prod

: L BNSC V A 0568 00000244 > Delimited by a length
: of 244 octets
:
: V Vol. production
:
:
: L BNSC K A 0668 00001377 > Delimited by a length
V of 1377 octets
:
: V Catalogue
:
:
: L BNSC I A 0322 00345666 > Delimited by a length
: of 345666 octets
:
:
: V Science
:
:

CCSD$$MARKERend_prod > The end marker

Figure 5-11: Mixing Delimitation by Contiguous EOF with
Sequential EOF

L CCSD Z C 0001 00000003 > 3 contiguous
EOFs

: L BNSC K E 0568 00000001
:
: :
: V
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <
:
: L BNSC I E 0668 00000002 > 2 sequential
: EOFs
: :
: :
V V
: ¤:¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <
: :
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <
:
: L BNSC S E 0322 00000001 > 1 sequential
: EOF
: :
: V
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤ <

¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <

EOF type delimitation
techniques is shown in
Figure 5-11. This case
could arise when the
number of files which are
on a (usually unlabelled)
magnetic tape is unknown.
C o n t i g u o u s E O F
delimitation is then used to
indicate End-of-Volume and
the individual files are
delimited by Sequential
End-of-File.

Q u i t e c o m p l e x
combinations of delimitation
t e c h n i q u e s c a n b e
conceived.

Issue 1 May 199235

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 5-12 shows an example using all three EOF delimitation techniques, as well as a length
delimited LVO. All the LVO LABELs have Version ID = 3.

Figure 5-13 shows the overall structure in a schematic form, in which the EOF Delimitation IDs (E,C,

Figure 5-12: Mixed EOF Delimitation Techniques and Nesting

L CCSD Z C 0001 00000002 > 2 contiguous EOFs

: L CCSD Z E 0001 00000001 > 1 sequential EOF
:
: : L CCSD U F 0009 00000001 > 1 shared EOF
: :
: : : L ESOC K A 6784 00004096 > length of 4096 octets
: : :
: : :
: : : V
: V :
: : V
: : : L ESOC I F 6789 00000001 > 1 shared EOF
V : :
: : : :
: : : V
: : : :
: : : :
: : ¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤ <
: ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤¤ <
:
: L ESOC V E 6700 00000001 > 1 sequential EOF
:
: :
: V
: :
: :
: ¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ <

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ <
¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ <

or F) are followed by a number indicating the number of EOFs specified in the Delimitation Parameter
sub-field. It is assumed that the data are read from left to right in the figure, the presence of an EOF
in the input stream is indicated by an "e". The product has four structure levels numbered 0 to 3.

Figure 5-13: Schematic of Mixed EOF Delimitation Techniques and Nesting

Structure
level >>>>>>>>>>>>>>> Octet stream >>>>>>>>>>>>>>>>

0 C2-- C = Contiguous EOF
1 E1------------------------- E1----------- E = Sequential EOF
2 F1---------------------- F = Shared EOF
3 A---------F1---------- A = Length

ee eee < EOFs

At the lowest structure level (level 3) there are two Simple LVOs, one delimited by length followed by
one delimited by Shared EOF. These two are packaged within a Compound LVO also delimited by
Shared EOF, therefore the first EOF in the octet stream delimits both these shared EOF delimited
LVOs (see Reference [1], Section 3.3.4.6). The EOF does not delimit the LVO one structure level up
as this uses Sequential EOF which ignores any EOFs encountered at lower structure levels (see
Reference [1], Section 3.3.4.4). The next EOF in the input stream does delimit the first Sequential

Issue 1 May 199236

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

EOF delimited LVO at level 1. The package so far complete is followed by another Sequential EOF
delimited LVO, which again uses only 1 EOF. The EOFs used to delimit the Sequential EOF delimited
LVOs do no count towards the delimitation of the highest level LVO, as Contiguous EOF delimitation
also ignores any EOFs found at lower structure levels (see Reference [1], Section 3.3.4.5). Finally
there are two contiguous EOFs to delimit the highest level (level 0) LVO and the package is complete.

If delimitation by length is combined with delimitation by EOF, as shown in Figure 5-14, then this is
a legal structure. That is, the delimitation of the lower structure level LVO is deemed to be complete
due to the end of the file, and then the higher structure level LVO is also completed. From an
implementation point of view, this means that there must be a lookahead to notice that the end of the
file has been reached (and the class I LVO has completed), and then following that, also the fact that
the number of bytes specified in the class Z LVO for the length of its VALUE field has been reached.

Figure 5-14: Nesting of EOF Delimitation within Length Delimitation

L CCSD Z A 0001 00002345 > Delimitation by Length 2345

L CNES I F 1123 00000001 > Delimitation by Shared EOF

V

V

¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤ <

5.4 Potential Errors In Combining Delimitation Techniques

It is possible to devise combinations of delimitation techniques or delimitation parameters which while
each LVO LABEL is syntactically correct, when the LVOs are combined they do not form a meaningful
product and it is not possible to interpret the structure. For example:

• One of the most simple mistakes is when using only delimitation by length
and not having the length of the VALUE fields add up correctly. For example
in Figure 5-15, the class I Simple LVO has a VALUE field length of 512
octets, therefore the VALUE field of the class Z Compound LVO must be
512+20 (the size of the class I LABEL) = 532 octets, but the Delimitation
Parameter value is only 500 and therefore obviously this is an error.

Figure 5-15: Error in Length Delimitation Value

L CCSD Z A 0001 00000500 > delimitation length of 500 octets

L ESOC I A 1000 00000512 > delimitation length of 512 octets
V

V

Issue 1 May 199237

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

• A length delimited LVO containing an EOF delimited LVO for which the EOF
appears before the end of the outer length delimited LVO has been reached.
This is shown in Figure 5-16.

This usage makes little sense in any case, since EOF delimitation is intended

Figure 5-16: Error in Nesting EOF delimitation within Length Delimitation

L CCSD Z A 0001 00001000 > delimitation length of 1000 octets

L ESOC I F 1002 00000001 > delimitation by 1 shared EOF

:
V V > VALUE field only 850 octets

:
:

¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤

for the case when length is not known and therefore enveloping an EOF
delimited object in an envelope of known length is not reasonable. The
correct approach would be to use EOF delimitation for both inner and outer
LVOs.

• A length delimited LVO is packaged within an LVO delimited by Shared EOF,
as indicated in Figure 5-17. An EOF appears in the VALUE field of the length
delimited LVO. While this is ignored by the length delimited LVO, the outer
LVO recognises it and terminates prematurely. Therefore, this is an error.

Figure 5-17: Erroneous Occurrence of an EOF within a Length Delimited LVO

L CCSD Z F 0001 00000001 F1

: L ESOC K A 6784 00004096 L1
:
:
: V
: ¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤ < N.B. Spurious EOF in
V VALUE field of length
: delimited LVO
: L ESOC I F 6789 00000001 F1
:
: :
: V
: :
: :

¤¤¤¤¤¤¤¤¤¤¤¤¤¤ EOF ¤¤¤¤¤¤¤¤¤¤¤¤¤ <

Care should be taken to avoid such erroneous, doubtful or ambiguous cases.

Issue 1 May 199238

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

6 THE COMPOUND LVOS

Note: In this section the term metadata is used to refer to data descriptions, i.e.,
"description metadata".

There are three forms of Compound LVO; the Exchange Data Unit (EDU), the Application Data Unit
(ADU and the Description Data Unit (DDU). The functions of the EDU are summarised in Section
3.2.2.1. All SFDU products must be exchanged in an EDU with a Class ID = Z and an ADID =
CCSD0001 in its LABEL. The other two Compound LVO are discussed in more detail in the following
two sections.

6.1 The Application Data Unit

The purpose of an Application Data Unit (ADU) is to package application data instances together with
any necessary ancillary data and identification (catalogue) information to represent a self-contained
unit within the product for purposes of processing and analysis. Application Data Units only contain
these categories of data and in particular do not contain metadata (i.e., data that would be stored in
LVOs with Class IDs = F, D or E). Thus, in parsing a product in a setup where DDUs are supplied
with the data, the user can always be sure that the ADUs will only contain application data and no
metadata. Of course, the same packaging function can be realised using an LVO of Class ID = Z as
the envelope, but in this case a process, looking say for metadata only, would have to "open" all the
nested SFDUs down to all nesting levels in order to ensure that no metadata is missed. On the other
hand it could skip over ADUs knowing that there is no metadata within.

An example of an ADU is shown in Figure 6-1. This sample structure is a class U LVO (an ADU)
within an outer EDU package (LVO with ADID = CCSD0001 and Class ID = Z). Contained within the
VALUE field of the ADU are three LVOs containing an instance of application data, some
supplementary data, and the pertinent identification or catalogue data.

Figure 6-1: Example of an ADU

L CCSD Z 0001

L CCSD U 0009

L ESOC K 0067

 Catalogue

V information

V L ESOC I 0079

V
V Radar Altimeter

 data

L ESOC S 0035

V Altimeter

 ancillary data

Issue 1 May 199239

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

ADUs may also be nested as shown in Figure 6-2, and must always be carried within an EDU (a class
Z LVO) product.

Figure 6-2: Example of Nested ADUs

L CCSD Z 0001

L ESOC K 0028

 Catalogue
V info

L CCSD U 0009

L ESOC K 0067

 Catalogue
V information

L CCSD U 0009

L ESOC S 0020
V

 Visible sensor
V supp data

L ESOC I 0021
V

V Visible sensor
V readings

V
L CCSD U 0009

L ESOC S 0030
V

 IR sensor
V supp data

L ESOC I 0031
V

 IR sensor
V readings

L ESOC I 0035

 Image
V data

L ESOC V 0029

 Production
V info

In the current Recommendation (Reference [1]) the ADID = CCSD0009 is provided for building ADUs.
Since an ADU is intended for carrying information data instances, only LVOs with Class IDs = U, I, S
and K are permitted within an ADU’s VALUE field. The service classes R and C are also permitted,
although CCSD0009 does not define a use for LVOs with Class ID = C. There may be further ADIDs
defined in the future which utilise it.

Issue 1 May 199240

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

6.2 The Description Data Unit

6.2.1 Overview

Description Data Units (DDUs) are used for packaging together metadata. The DDU also provides a
mechanism for linking ADIDs and the corresponding data descriptions as illustrated in Figure 6-3. The
left hand side of the diagram shows a simple EDU containing an LVO of Class ID = I. The links to a
schematic data base are shown; this data base notionally contains CCSDS defined ADIDs and
registered descriptions (e.g., ESSD1233). In practice the CCSDS-defined ADIDs will be incorporated
in service software of some type, so the pointing is to that software. On the other hand, the registered
descriptions will be stored in some kind of physical database on the system processing the SFDU.
The ADID of any LVO should give access to a complete description of that LVO’s VALUE field. This
might be either a set of structure and construction rules defined in Reference [1] or a description
supplied by the producer of the data. The problem is that the data description does not itself contain
the ADID of the data to which it refers. Its ADID will describe how to interpret its own VALUE field.
To solve this problem a DDU carries the ADID of the described data along with the data descriptions.

Figure 6-3: Referencing of Data Descriptions

Access Data Description
Keys

L CCSD Z 0001
> CCSD0001 Envelope Packaging

L ESSD I 1234
CCSD0003 Replacement Service

V

V : :
 : :
 : :
 ESSD1233 Data Descr. n

> ESSD1234 Data Descr. n+1
Object containing
Application Data : :

Database of Data Descriptions
: :

The essential contents of a DDU are:

1. A mandatory class C LVO containing the ADID of the data unit to which that
DDU applies. This is used for data description identification. This LVO may
also optionally contain references to other metadata not carried within the
DDU

2. Data Description LVOs (metadata), that is class D, E or S LVOs.

Issue 1 May 199241

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

An example of a DDU is shown in Figure 6-4.

Figure 6-4: Example of a DDU

L CCSD Z 0001

L CCSD F 0005

L CCSD C 0004

V Identification

V L NSSD D 1122
V

V DDR

L NSSD E 4222

V DED

Figure 6-5 gives an example of how a DDU relates to the data it describes. In Figure 6-5, the second
and third LVOs (Class IDs = D and E) form the data description itself, whereas the first LVO (Class
ID = C) contains the ADID under which this data description is registered. The class I LVOs on the left
hand side of the diagram use this ADID to reference the class D LVO (Data Description Record) and
the class E LVO (Data Element Dictionary) on the right hand side of the diagram. The VALUE field
of the class D LVO is written in FORTRAN, and its ADID (NJPL L006) will reference a description of
this language. The class E LVO is written in a form of structured English, which will be defined in the
description registered under NSSD4222.

Figure 6-5: Data Object/DDU Relationship

L CCSD Z 0001 Data Description Unit

L INPE I 0023
L CCSD Z 0001

V 12 HELLO 80.5
V L CCSD F 0005

L INPE I 0023
L CCSD C 0004

V 14 ADIOS 69.2
> ADIDNAME=INPE0023;

Data Object L NJPL D L006
V

V READ(POWER,LABEL,TEMP)
V FORMAT(I2,A5,f4.1)

L NSSD E 4222

POWER in WATTS
V TEMP in DEG.C

LABEL has no units

Issue 1 May 199242

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

The data description information should normally be in place on the user’s system available for
interpretation of the application data. An example of an automated implementation is as follows:

The data description information upon arrival is logged into a library or database
system, keyed on the ADID extracted from the class C LVO. When a data object with
that ADID is received, the corresponding data description information is in principle
retrieved from the library, using this ADID as a key. If the description is composed
of LVOs whose labels contain CCCDS ADIDs, then these LVOs can be parsed using
generic SFDU software, since they conform to CCSDS standards. However LVOs
whose labels contain non-CCSDS ADIDs can only be directly parsed if suitable
(normally local) software has been prepared to parse according to this description.
Thus for maximum automation in parsing and interpretation in open systems, it is
recommended that the description LVOs be expressed using CCSDS standard
languages and formats, where this is possible.

DDUs are built using the construction rules associated with ADID = CCSD0005.

6.2.2 Data Description Identification

A CCSDS defined ADID is provided for describing the VALUE field of the first LVO within a DDU. This
is ADID = CCSD0004. The LABEL field thus has ADID = CCSD0004 and Class ID = C. ADID =
CCSD0004 indicates that the VALUE field will consist of one or more "parameter=value" statements.
Four parameter names are permitted, as follows:

ADIDNAME = value (mandatory)
DEDID = value (optional)
DDRID = value (optional)
SUPID = value (optional)

Note: Reference [1] should be consulted for exact syntax and rules.

The statement ADIDNAME=value supplies the Authority and Description Identifier (ADID) under which
the DDU is registered.

The statement DDRID=value supplies the ADID under which a Data Description Record (DDR) to be
used has been stored. Several such statements may appear in this VALUE field, this situation
corresponds to the use of alternative Data Description Languages (DDLs) to describe the same data.

The statement DEDID=value supplies the ADID under which a Data Entity Dictionary (DED) to be
used has been stored. The order of precedence of these referenced DEDs is the order of occurrence
in the DDU. Reference DEDs have lower precedence than DEDs actually included within the DDU.

The statement SUPID=value supplies the ADID under which Supplementary Metadata Data (in a
class S LVO) to be used has been stored. Several such statements may appear in this VALUE field.

The value provided in each statement is an eight RA character text string, specifying an ADID (CAID
(four bytes) followed by a DDID (four bytes)).

Issue 1 May 199243

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 6-6 illustrates referencing of a DDR and a DED. In this example, the DDR with ADID =
NJPLL010 and the DED with ADID = NJPLL009 have been registered separately. The LABEL of the
class I LVO on the left hand side of the diagram indicates that the DDU describing it will be identified
by ADIDNAME = NJPLA236. Inspecting the DDU itself, on the right hand side of the diagram it can
be seen that the required DDR(s) and DED(s) are not carried in the DDU, but referenced to in other
DDUs, therefore these DDUs must then be examined. Any DDRs in the DDU with ADID = NJPLL010
are logically included and also any DEDs in the DDU with ADID = NJPLL009. Of course when the
DDUs with ADIDs = NJPLL010 and NJPLl009 are examined they may also refer to other DDUs and
hence the chain would continue until actual class E or D LVOs are found.

Figure 6-6: Example of DDU with Referenced DDR/DED

L CCSD Z 0001 Data Description Unit

L NJPL I A236
L CCSD Z 0001

V VALUE field
V (described L CCSD F 0005

by DDR/DED)
V L CCSD C 0004

V
Data object > ADIDNAME=NJPLA236;

V DDRID=NJPLL010;
DEDID=NJPLL009;

6.2.3 Data Description Records - LVOs with Class ID = D

The Data Description Record (DDR) provides the information which

Figure 6-7: DDR LVO
Example

L ESOC D EE56

V DDR

describes the syntax of a data object, and provide the means by which a
data object can be formulated or parsed. This set of statements identifies
the data entities and describes the format (data representation) that is used
to express its value in the data object. In Figure 6-7, the ADID ESOCEE56
indicates the language in which the DDR is expressed. A DDR may be
composed in any Data Description Language (DDL), which is a language
used to describe data objects. It is desirable to use a machine
interpretable DDL to support the automated parsing and construction of
data products.

6.2.4 Data Entity Dictionaries - LVOs with Class ID = E

A Data Entity Dictionary is the repository of the definitions of the

Figure 6-8: DED LVO
Example

L ESOC E E034

V DED

vocabulary used in an information system. A DED enables users
separated by discipline, geography or time to share the same semantic
view of that data. The primary requirement of a DED is to provide
complete definitions of the vocabulary used in the data product labels, in
the metadata for the data product, and in the descriptive detail of data
objects. Each entry in a DED will typically define a data entity, give
information such as name, unit, type (e.g., digital, analog, etc.), domain,
etc.

Issue 1 May 199244

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

6.2.5 Supplementary Metadata - LVOs with Class ID = S

When a class S LVO is used within a DDU, the supplementary data is said

Figure 6-9: Supp.
Metadata Example

L CCSD S 0002

 Supp.

V metadata

to be instance independent metadata, that is data which is supplementary
to data descriptions and not supplementary to application data, as is the
case when class S LVOs appear elsewhere in an SFDU structure.
Supplementary metadata will typically be used to provide additional
semantic material that is not appropriate for a DED. However the concept
of supplementary metadata also includes background documentation such
as instrument descriptions. Figure 6-9 shows a class S LVO which
contains supplementary metadata that is expressed as English text, as
indicated by the ADID = CCSD0002.

Issue 1 May 199245

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

7 REQUIREMENTS, RATIONALES AND COMPLIANCE

The requirements which must be satisfied by the SFDU structure and construction rules are stated in
Section 7.1. Each requirement is numbered to permit cross-checking with the implementation
technique provided to satisfy it.

A Compliance Table showing how the SFDU Structure and Construction Rules (Reference [1]) meets
the requirements appears in Section 7.2.

7.1 Requirements

7.1.1 Product Building or Data Packaging

1. Provide the means to generally classify or categorise data units.

Rationale:
Certain broad categories of data are common in data products:

(i) The application data itself;

(ii) Data supplementary to the application data such as instrument
housekeeping, pointing data, platform housekeeping;

(iii) Catalogue or identification data (giving, for example, dates/times of
measurements, orbit number, overall data quality, etc.);

(iv) Production information (e.g., date of product generation, producer
system, volume labelling information).

Recognition of these categories can help the systematic design of products.
Processing is also assisted, since processing systems can be designed to deal with
the various categories of data, which can be recognised and routed to the relevant
modules.

2. Provide the means to structure data objects within a product into a hierarchy (i.e., to allow nesting
of the product’s component units).

Rationale:
Data products are frequently hierarchical because:

(i) Application data may be packaged at several levels, eg. major-frames
and minor-frames, images and image lines. Figure 7-1 (overleaf)
shows this case schematically;

(ii) Products may contain output from several instruments each with a
hierarchical structure mentioned in (i) above. Figure 7-2 (overleaf)
shows an example of this case;

(iii) Data streams are frequently merged for transmission purposes and
then split out again on reception.

Issue 1 May 199246

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 7-1: Schematic of Visible Image Scan

Figure 7-2: Schematic of Eureca Product Structure

These two example cases may be combined thus creating quite complex hierarchies.

3. Allow packaging of data on common media:

3.1 Provide means to package contiguous data units into a data product.

Rationale:
This is the standard way of building data products, where files, records, blocks
or other components are put together contiguously on a magnetic tape, disk
or other physical support. Alternatively the product may be transmitted over
data lines as a continuous stream.

Issue 1 May 199247

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

3.2. Provide means to reference data units which are not contiguous with the rest of the
product.

Rationale:
(i) For a large data product it may not be convenient to put the data all

together contiguously.

(ii) Several products may need to reference some common data.

4. Provide means to include existing data objects unchanged into a product complying with the
Recommendation.

Rationale:
Existing data forms for which there is a large base of installed
processing/analysis software must be supported.

7.1.2 Data Delimitation

5. Allow indication of data unit length by an explicit indication.

Rationale:
(i) Data objects of fixed length, in many cases containing an embedded

length indication, are the commonest type of object in both real-time
and off-line systems (e.g., most communications protocols break the
transported data up into fixed length blocks).

(ii) It is traditional for data products to contain length indications in
standard headers.

(iii) Length provides a good means of steering from one unit to the next
without the need for examining data contents, marker searches etc.

6. Provide means independent of length to delimit data units or entire products when the length of the
product is not known in advance.

Rationale:

(i) Science data product generators collect science and supplementary
products from a number of sources. Often these collections are too
large to be buffered within a machine so that total size cannot be
determined in a single pass. This can be handled by breaking the
data produced into fixed length blocks or by generating a marker
when the product is complete.

(ii) Some products are created by a human using a word processor or
text editor. The related software typically does not have facilities to
count the total number of characters and control bytes of the resulting
data object. Performing the counting manually would be time
consuming and error prone.

Issue 1 May 199248

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

7.1.3 Data Description

7. Provide the means to separate instance-independent metadata from the data it describes.

Rationale:
This means that metadata can be transmitted once only and then used many
times. Otherwise retransmission of fixed metadata would be inefficient,
particularly with complex products.

8. Allow this metadata to be separated into:

8.1 Syntax metadata (i.e., that giving order, location, organisation of the data being
described).

8.2 Semantic metadata (i.e., meaning) of named data elements.

Rationale:
(i) It is now common to distinguish between data syntax (format,

representation, etc.) and semantics (data element dictionaries, etc.).

(ii) Several communities may use a given set of data but wish to use
different names and terminology. These differences can be reflected
in different semantic metadata associated with the same syntactic
metadata. That is each community uses the "native" semantics of
each format and thus requires the "dictionary" for each format.

(iii) A given community may wish to establish a common set of semantics
for use with different formats. This is the opposite approach than
taken in (ii).

9. Provide a means to permit association of data instances with their corresponding metadata.

Rationale:
There must be a means of making the correspondence between a data
instance and its (in principle separate) data description.

10. Provide a means to describe the overall structure of a product.

Rationale:
A Product may be more than the sum of its parts. Conventionally products
have been described in Data Interchange Documents and Interface Control
Documents which formally describe a complete product or set of products.

Issue 1 May 199249

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

7.2 Requirements Implementation Compliance

The requirements described in Section 7.1 have been met by a set of SFDU techniques which have
been outlined in Sections 3 to 6.

The Compliance Table (Table 7-1) shows how the requirements are satisfied. In particular, column
3 of this Table gives the object or construct by means of which that requirement is met. The means
may consist of a particular set of construction rules. Column 4 gives the reference to the subsection
where the implementation(s) of that requirement is discussed.

Table 7-1: Requirements Compliance

No Requirement Satisfied by Section

1 Classify or categorise data units Class identifier in LABEL 3.4.1

2 Structure data objects within a
product into a hierarchy

Packaging techniques 4

3 Package contiguous data units into
a data product

Envelope packaging 4.1

4 Reference data units which are not
contiguous

Replacement services 4.2

5 Explicit indication of data unit length Delimitation techniques specified in
Version 1, 2 and 3 with Delimitation ID
= A or B

5.1

6 Delimit data units or products when
the length of the product is not
known

Version 3 delimitation techniques not
included in requirement 5 above 5.2

7 Separate instance-independent
metadata from the data instances it
describes

Description data unit
6.2

8 Allow metadata to be split into:
syntax metadata
semantic metadata

Description data units contents:
DDR LVO (Class ID = D)
DED LVO (Class ID = E)

6.2.2
6.2.3

9 a) Permit association of data
instances with their corresponding
metadata

b) Make descriptions self identifying

The ADID concept

Class C LVO (within a DDU) carrying
ADID of described data

7.1

6.2.1.1

10 Provide a means to describe the
overall structure of a product

Not formally satisfied. It can be
informally satisfied by including in the
product a Class = S LVO containing a
description of the product structure in
e.g. English or graphic form.

-

Issue 1 May 199250

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

8 EXAMPLE SFDU APPLICATIONS

Given a complete outline of the rationale and rules for SFDU structures, the reader is now in a position
to understand some examples drawn from real projects. This shows how the concept can be used
in practice. The examples are discussed in sufficient detail for the reader to understand how the
techniques have been applied. In general, full details of data structures down to the byte level are not
presented - for this the reader will have to consult the relevant project documentation.

The examples given are:

• European Retrievable Carrier (EURECA) Data Disposition System, which is
an example of a fairly simple SFDU envelope packaging system, using length
delimitation. This is also a case of an on-line or interactive SFDU application.
Briefly discussed in this context are similar systems being developed both by
NASA and ESA for the International Solar Terrestrial Programme(ISTP).

• International Halley Watch, which shows the extensive use of the
Replacement Service (file referencing) for archive data sets on CD-ROMS.

• Data Description Package Registration and Dissemination, apart from giving
a good scenario for registration of data descriptions, this example shows
extensive usage of marker delimitation for data sets prepared on a word
processor.

• Data Description Language Usage for Data Description Record Writing. This
shows an example of using the data structure declaration parts of the Ada
programming language to describe data logically and also physically for any
particular medium/operating system.

(The examples represent the status of the projects concerned at the
time this document was written)

These examples demonstrate all the basic aims of the SFDU concept and are drawn from real
projects. In particular they show, in collaboration, the capability of complete end-to-end automated
generation and interpretation of SFDU products, in both on-line and off-line applications.

8.1 European Retrievable Carrier (EURECA)

The European Retrievable Carrier (EURECA) is due to be launched by the Space Shuttle Atlantis in
1992. It will fly in a low earth orbit and carry a payload of microgravity experiments. The spacecraft
uses Packet Telemetry, which is downlinked during the passes over the ground station in Maspalomas,
Canary Islands. The payload data packets are transmitted to the Control Centre at the European
Space Operations Centre (ESOC), Darmstadt after passes, where they are stored in history files. The
packet telemetry standard allows separate packet identifiers for each experiment, so the data packets
from each experiment are stored on separate files ordered according to the on-board time at which
they were generated. The experiment owners are Principal Investigators (PIs) who work at their own
home institutes and are generally not present at the control centre. They send detailed requests for
operation of their instruments to the control centre, which plans them into a command schedule and
then acquires and stores the resulting experimental data. Instead of delivering the data on magnetic
tape or other transportable media, the data is made available to the users electronically in the so-

Issue 1 May 199251

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

called EURECA Data Disposition system (DDS). The host computers at the control centre are
DEC/VMS and the data distribution takes place using a number of communications protocols
(DECNET, FTAM, FTP and KERMIT).

The DDS delivers data to the users by file transfer. Each transfer takes place as a result of a PI
request for data, which is itself a file transfer from the PI to the DDS. Each request results in the
supply of one file of data. Thus if a PI requires a set of files, he issues a separate request for each
one. Each PI can request either a list of all available data for his own instrument (i.e., a catalogue)
or files of telemetry data packets produced by that instrument. He may also request ancillary data or
any data which is deemed to be made available to the whole user community. Data Transfer
Requests are in the form of an ASCII file. The details of these requests are not of interest in this
context, since they are not in SFDU format.

The DDS responds with:

• An acknowledgement of the request.

• A catalogue entry, giving identifying information about the file supplied; this
will include source/type identification, the time period spanned by the file, the
consolidation time for that data stream, etc.

• The requested data set.

Figure 8-1: Schematic of Data Delivery
Format for EURECA

L CCSD Z 0001 L1

L EEUR V 1000 L2

V Request details and

 response status

L EEUR K 1001 L3

V Catalogue record for

 requested data set

L EEUR I 1107 L4

V
 Experiment data packet 1

 Experiment data packet 2

V
: :
: ... :
: :

 Experiment data packet n

This response is packaged in an SFDU as shown in
Figure 8-1. This reflects the components mentioned
above, there being three LVOs. Envelope
packaging with length delimitation is used. The
resulting SFDU has:

1. A c l a s s V L V O c a r r y i n g a n
acknowledgement record in which is
contained a detailed specification of the
original request and the request status.

2. A class K LVO containing a catalogue entry
for the requested data set.

3. A class I LVO containing the requested
data set itself.

While the first two LVOs are of fixed length, the
application data sets will vary in size even for a
given instrument, since the number of consecutive
packets collected to constitute a file will depend
upon the actual duty cycle (operation time) of the
instrument, and on the time span requested by the
PI.

It is intended that data descriptions are provided in
text form. That is, English language ASCII text
descriptions are supplied to the Control Authority.
They are supplied to the Control authority in simple
DDUs, containing the relevant description in a DDR
(a class D LVO), the approach being similar to that

Issue 1 May 199252

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

described in the Data Description Package Registration example of Section 8.3.

Since the size of the class I LVO varies from request to request an alternative approach would have
been to use marker pattern delimitation. This approach was not taken because an overriding concern
was to minimise the complexity on the side of the users - while marker pattern delimitation can simplify
matters for the data producer, it shifts work to the user (he has to reserve processing buffers and carry
out marker searches).

The foregoing information sufficiently illustrates the principles. As examples, Table 8-1 shows the
VALUE field of the Catalogue Record and Table 8-2 (overleaf) shows the VALUE field of the
Acknowledgement Record. These records are comprised of ASCII text in fixed positions in the VALUE
field. To ease readability, carriage return, line feed (CR/LF) pairs are interspersed throughout the text
to break it into conveniently readable blocks when ingested into a word processor or text editor. All
of the fields use ASCII characters to convey the data and are left justified within the field, if any of a
field is not completely filled by the ASCII string, then it is padded by spaces. In the third column of
Table 8-1 and Table 8-2, the underline symbol, "_", represents a space, a CR represents a carriage
return and LF represents a line feed.

In the International Solar Terrestrial Programme (ISTP) some approaches are being taken which are

Table 8-1: VALUE field of Catalogue Record in EURECA DDS

Field Length in bytes Notes

Screen format field 1 2 CR,LF

Spacecraft name 8 eg.EURECA__

Data Identifier 5 eg.ORA1_

Data type 5 eg.EXP__

ADID 9 eg.EEUR1001_

First packet time 24 DD-MMM-YYYY:HH:MM:SS.CC_

Last packet time 24 DD-MMM-YYYY:HH:MM:SS.CC_

Screen format field 2 2 CR,LF

Consolidated time 24 DD-MMM-YYYY:HH:MM:SS.CC_

Number of packets 9 Decimal ASCII string, no leading zeros

Spare 14 ASCII string

Screen format field 3 2 CR,LF

very similar to the EURECA DDS. The ISTP comprises the GEOTAIL, WIND and POLAR missions
of NASA, the CLUSTER mission of ESA, and a NASA-ESA collaborative mission SOHO. Developed
quite independently of the EURECA work described above, the NASA ISTP Central Data Handling
Facility (CDHF) provides an interactive interface to each investigator’s Remote Data Analysis Facilities.
The CDHF provides a more comprehensive set of services than the EURECA DDS. For example, it
covers distribution of Key Parameter files and software as well as level zero data (equivalent to the
EURECA experiment packets), its similarities to that work lie in the packaging of data files in an SFDU
using length delimitation and a relatively simple structure consisting of content identifier (a class K
LVO) followed by the data files themselves packaged in a class I LVO.

Issue 1 May 199253

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

For the Cluster mission, a similar set-up to the EURECA DDS is foreseen. This interactive system is

Table 8-2: VALUE field of Acknowledgement Record in EURECA DDS

Field Length in bytes Notes

Screen format field 1 2 CR,LF

Spacecraft name 8 EURECA__

Data Source 5 eg. ORA1_

Data Type 5 eg. HK1__

Screen format field 2 2 CR,LF

Request filename 80 ASCII string

Screen format field 3 2 CR,LF

/BEFORE specified 24 From command line

/BEFORE expanded 24 DD-MMM-YYYY:HH:MM:SS.CC_

Screen format field 4 2 CR,LF

/SINCE specified 24 From command line

/SINCE expanded 24 DD-MMM-YYYY:HH:MM:SS.CC_

Screen format field 5 2 CR,LF

Target specified 80 ASCII string

Screen format field 6 2 CR,LF

Processed at 24 DD-MMM-YYYY:HH:MM:SS.CC_

Computer 10 eg. VAX_8750__

Operating system 6 eg. VMS___

Version 6 eg. 5.2__

Screen format field 7 2 CR,LF

Error message 80 ASCII string

Screen format field 8 2 CR,LF

Comments/Spare 80 ASCII string

Screen format field 9 2 CR,LF

planned to be complemented by delivery of complete sets of mission data to all investigators on a
transportable medium, probably optical disk. These data sets will also be packaged within SFDUs in
a similar fashion to those delivered interactively via data lines.

Issue 1 May 199254

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

8.2 Halley Watch

This example is derived from the experience of taking approximately 5,000 files of data acquired during
spacecraft encounters with comet Halley and putting them on a CD-ROM for widespread distribution
to users. This example is not identical to any individual Halley Watch CD-ROM and some unessential
detail has been omitted for clarity and conciseness. However it captures the essence of SFDU usage
in Halley Watch.

SFDU techniques are used to label all the data files (remotely if appropriate) and to create a sequential
view of the resulting data product. This allows standard SFDU processing software to present a view
of the CD-ROM content to users, and to allow the users to ask for and get the files and associated file
descriptions, in any desired order, as required.

The nature of the data files varies widely, ranging from large images in binary to small ASCII text files
in the form of tables. Users range from those with little resources and working solely in a PC
environment to large research organisations with many investigators and corresponding support. The
distribution medium is CD-ROM using the ISO 9660 volume and file structure standard. This standard
provides a hierarchical directory structure and access to associated files, but does not provide standard
attributes recognisable across different hardware and operating systems, that would allow one to
indicate the type of a particular file, such as an ASCII text file. Thus in ISO 9660, all files are viewed
as binary. The user may access certain parts of the data (browse text files) using a text editor or may
use SFDU/LVO parsing and presentation software.

SFDU LABELs for automated access appear in a file

Figure 8-2: Overall Structure of
VOLDESC.SFD SFDU

 Header LVOs

 Data Description Units
 (DDUs)

 Application Data Units
 using the Replacement
 technique for
 referencing files of
 observations and
 indexes for those
 files

called VOLDESC.SFDwhich is in the root directory of
the random access medium. The overall structure of
the VOLDESC file is shown in Figure 8-2, which
consists of an SFDU which contains:

1. Header LVOs.

2. A further SFDU containing:

• Description Data Units (DDUs)

• Application Data Units (ADUs)

All these DDUs and ADUs use referencing
techniques to point to the relevant data objects
stored elsewhere on the CD-ROM, i.e.,
external to the VOLDESC.SFD SFDU file.

Table 8-3 (overleaf) lists the contents of the VOLDESC.SFD SFDU in more detail. Members (second
column) whose names are followed with an asterisk are not actually present in the VOLDESC.SFD file,
but are logically incorporated by the Replacement packaging technique, using LVOs of Class ID = R.

Issue 1 May 199255

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

The application data of interest can be classified into three different common formats:

- Observations Type X (data of primary interest)
- Observations Type Y (other data of primary interest)
- Observations Type Z (data of secondary interest)

For simplicity, the examples given here only refer to Observations of Type X, so this will be the only
type referred to in the remaining text.

Figure 8-3 (overleaf) shows the product in more detail. For brevity REFERENCETYPEstatements are

Table 8-3: VOLDESC.SFD File Contents

Category Members Definition Contents

Header LVOs

VPI Volume
Preparation
Information

Who prepared the product, when, what media type,
operating system, etc.

PA Product
Attributes

Title, author, time coverage of product, date of
publication, etc. (i.e. typical product cataloguing attributes)

ID* Introductory
Description

A READ.ME file giving an overview of the CD-ROM,
including its directory organisation

DO Detailed
Overview

Text LVO giving an overview of the data source(s), reasons
for collection, types of data, processing history, data quality,
expected uses for the data, etc.

Data Descriptions

VPIDD*
VPI Data

Description
Description of Volume Preparation Information in PVL

PADD*
DD for Product

Attributes
Data description of Product Attributes VALUE field in PVL

OTXDD*
Observation Type

X Data
Description

An English language text description of the format and
meaning of the data fields of the common format used for all
OTX data objects

IIDD*
DD for Inventory

& Index
A data description for Product Inventory (PI) and the Indexes
(OTXI1, OTXI2,..). These all have the same tabular
structure.

Data Inventory
and Indexes PI*

Product Inventory Inventory of all files listed according to some key such as
time

Index and
References to X

Type Objects

OTXI1* Index 1 for OTX
files

OTX Index 1 (OTXI1) file. This file lists all OTX objects in
order of a key ’1’ (e.g. time,) giving location in the product
and other attributes.

OTXI2* Index 2
Similar to OTXI1; OTX Index 2 (OTXI2) file which lists all
OTX objects in order of a key ’2’ (e.g. spatial location)

OTX* Observation Type
X files

Contains all the data in X type format and meaning

not explicitly shown. However in practice each class R LVO includes a REFERENCETYPEstatement
defining the reference environment as $CCSDS1. In this environment an asterisk (*) is used as a
wildcard to refer to a collection of files. Thus OTX*.* refers to all the files containing OTX at the start
of their filename, and the preceding SFDU LABEL logically labels each of these files, thereby forming
logical LVOs. Note that the filenames used in the SFDU product are in the $CCSDS1format, and the
filenames of the files that are actually accessed, pointed to on the right had side of the diagram, are
in their native VAX VMS format for addressing a CD-ROM.

Issue 1 May 199256

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 8-3: Detailed Schematic of VOLDESC.SFD File

Issue 1 May 199257

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

8.3 Data Description Registration and Dissemination

In this example, SFDUs are used in the packaging of data descriptions. A Registration Package (RP)
is used in the submission of all the information necessary to register data descriptions with a Control
Authority Office. Each RP must therefore contain all the information which goes into the DDUs needed
for processing SFDU data products. This example is drawn from experience gained in the operation
of two NASA CAOs: the primary NASA CAO at NSSDC and a CAO operated by the UARS satellite
project. It highlights the use of the SFDU packaging techniques for both the registration and
dissemination functions. It also shows the use of SFDUs in a text environment.

A data producer has defined a data structure (or data object) that will occur frequently in a data stream
destined for many of his colleagues. This data object will carry instrument values of magnetic field
observations taken each minute. The data producer has created an English language text description
of the format of the data object using his local word processor, and desires to register this description
with a CAO so that he need not provide it to each recipient of his data objects.

His local CAO provides him via electronic mail with a template for a Registration Package which may
be submitted via electronic mail. This template is in SFDU form, and expressed in ASCII and is
therefore a conforming SFDU product. The template is shown schematically in Figure 8-4 (overleaf).
It uses marker pattern delimitation throughout and thus is completely suitable for handling in a word
processor. The data producer accordingly imports it into his word processor.

This template consists of an EDU (class Z LVO) containing a catalogue object (class K LVO)
expressed in PVL (see Reference [2]) followed by a DDU (class F LVO). The catalogue object
includes the minimum attributes required (not all shown here) by all CAOs (see Reference [3]), and
the DDU contains its instance identifier (class C LVO) and the data description (class D LVO) itself.
For space reasons, explanatory comments in the PVL are omitted. This template is quite simple and
does not have a separate dictionary object (class E LVO), nor does it suggest the data producer
should include previously registered information as may be done using the class C LVO.

The data producer transmits an ASCII text file of the completed template to the CAO via e-mail. The
CAO verifies that the identification information in the catalogue object is complete and that the SFDU
packaging conforms to the standard. Following this, the CAO assigns the ADID (for example,
NSSD0134) to this information and updates the ADIDNAMEstatement in the class C LVO. The
resulting Data Description Package is stored by the CAO using its internal mechanisms. The
registered ADID of NSSD0134 is sent to the data producer along with a copy of the registered
information in the form of the Data Description Package. The text file received by the Data Producer
from the CAO is shown in Figure 8-5 (page 60). For brevity, only extracts of the contents of the
various component objects are shown. This figure shows:

• Examples of completion of the template both by the data producer and the
CAO.

• That the LVO headers appear as 20 octet character strings in the text file.

• That the "lines" of PVL reflect the line delimitation techniques of the word
processor used. This may differ between the word processor used by the
data producer and the CAO. For example, the former’s word processor may
delimit lines by CR/LF whereas the latter uses CR only. This does not matter,
provided the import packages make the correct transformations of the line
delimiters. Of course the length of the VALUE field may change, but with the
marker delimitation technique this does not matter.

Issue 1 May 199258

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 8-4: Schematic for a Data Description Registration Package Template

L CCSD Z S 0001 mark0001

: L NSSD K S 0001 mark0002
:
: : DescriptionTitle = "";
: : DescriptionText = "";
: : Begin_Object = RegistrationOriginator;
: : Name = "";
: : Affiliation = "";
: : Begin_Object = MailAddress;
: : Street = "";
: : City/State = "";
: V Country = "";
: : End_Object = MailAddress;
: : Begin_Object = E-MailAddress;
: : AddressID = "";
: : E-MailSystem = "";
: : TelephoneNumber = "";
: : End_Object = E-MailAddress;
: : End_Object = RegistrationOriginator;
: : SubmissionDate = "";
: : ReleaseStatus = "";
:
: CCSD$$MARKERmark0002
V
: L CCSD F S 0005 mark0003
:
: : L CCSD C S 0004 mark0004
: :
: : V ADIDNAME = ZSUBMITT;
: :
: : CCSD$$MARKERmark0004
: :
: V L CCSD D S 0002 mark0005
: :
: : : This object carries the format description
: : V expressed in English and must be represented
: : : in ASCII to be a conforming SFDU object.
: : : Include a complete description of all fields
: :
: : CCSD$$MARKERmark0005
:
: CCSD$$MARKERmark0003

CCSD$$MARKERmark0001

Issue 1 May 199259

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 8-5: Data Description Package in SFDU Form as Received from Control Authority

CCSD3ZS00001mark0001NSSD3KS00020mark0002

/* This object carries identification information conforming to *
* description NSSD0020 at the NASA/NSSDC Control Authority. NSSD0020 *
* requires the use of PVL and a minimum set of parameter names. *
* Recall that values needing spaces are to be enclosed in quotes. */

SubmissionDate = 1991-01-24 ; /* YYYY-MM-DD form */
RevisionNumber = 1 ; /* 1 is initial submission*/
DescriptionTitle = "Magnetometer:Case 1" ; /* Brief title */
DescriptionText = "The associated description describes the

magnetometer data objects known as Case 1. It covers three
components in spacecraft coordinates and the field magnitude." ;

Begin_Object = RegistrationOriginator ;
Name = "John Doe" ; /* Person or Organization */
Affiliation = NASA/GSFC ; /* Parent Organization */
Begin_Object = MailAddress

Street = "Greenbelt Rd" ;
City/State = "Greenbelt, MD" ;

(ETC.......)

/* This completes the identification information for the submitted *
* Registration Package */

CCSD$$MARKERmark0002CCSD3FS00005mark0003CCSD3C00004mark0004

/* This object carries the registered identification (ADIDNAME) of then *
* description after update by the CA. Prior to this it should carry a *
* locally defined identifier beginning with a "Z". */

ADIDNAME = NSSD0134 ;

CCSD$$MARKERmark0004CCSD3DS00002mark0005

(Definition of magnetometer data object format and meaning)

CCSD$$MARKERmark0005CCSD$$MARKERmark0003CCSD$$MARKERmark0001

Issue 1 May 199260

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

8.4 Data Description Language Usage for Data Description Record Writing

The SFDU concept provides a mechanism to associate application data with their description.
Application data are contained in the VALUE field of a Simple LVO. Each of these Simple LVOs
identifies a DDR (by means of its ADID) that is used to describe the application data that they contain.

The DDRs could be written either, in a natural language document that is only understandable by a
human and not a computer (this is the more usual and traditional approach), or in a formal syntax.
The advantages of writing the DDR in a formal syntax are:

1. There is automatic access to the described data. This access can be
performed:

• Either, by means of an "interpreter/parser" that interprets the
DDR to parse the data elements and then delivers them to
the application.

• Or, by using the DDR directly in the application (i.e., the DDL
is written in a programming language and then directly
incorporated within the application, and compiled with the
application software).

2. A computer can be used to assist in the design and writing of the DDR.

3. It is possible to automatically generate the actual data in a VALUE field from
the syntax described in the DDR. This ensures consistency between the data
and the data description.

Further CCSDS Recommendations will approve some DDLs for this purpose. There follows an
example to illustrate how this application data description could be managed.

The example used here, DORIS telemetry (the layout of which is shown in Figure 8-6 (overleaf)), is
transmitted to the ground station in a format that begins with a synchronisation bit pattern (hexadecimal
value CD04) and the structure of which depends on the type of frame. The type of frame
(measurement, housekeeping 1 or 2, jamming, normal or incident dump) is given by the frame
identifier.

A frame has the following mandatory fields:

• Synchronisation bit pattern;
• The type of frame identifier;
• The least significant bits of the date.

All other fields in the frame are optional depending on the value of the frame identifier. In particular
the most significant bits of the date are given by the house-keeping frame.

The DDR provides:

1. A logical definition of each elementary or composite field;

Issue 1 May 199261

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

2. Information about the physical representation, such as:

• The location of the elementary fields within the composite fields.

• The bit pattern associated with each value of an elementary field
(e.g., 0000 associated with MEASUREMENT, 1010 associated with
HOUSEKEEPING 2, . . .).

The DDR for DORIS telemetry (shown in Figure 8-7 (page 64) and Figure 8-8 (page 65)) shows how

Figure 8-6: Schematic Layout of DORIS Telemetry

to use some features of the Ada programming language to describe a telemetry frame. The choice
of DORIS telemetry provides typical examples of scalar data and structured data (with mandatory and
optional structural parts).

The full description is too long to show in this example, therefore, some fields have been suppressed
and replaced by "......../........ ".

Figure 8-7 and Figure 8-8 show the DDR written in Ada describing the DORIS telemetry frame. This
DDR specifies both the logical definition of the telemetry frame and the physical representation
of every field in the frame. For the reader unfamiliar with Ada, these figures will be explained in more
detail.

Figure 8-7 shows an Ada declarative section which declares the type of each elementary field in the
frame (according to Ada, every variable must have a corresponding type explicitly assigned). In this
figure, is found:

• A list of the "enumerated types" used (each corresponds to a list of discrete
values). The first enumerated type declared (the statement "type
KIND_OF_BLOCK ... ") defines the list of enumerated values
MEASUREMENT, HOUSE_KEEPING_1, The following statement ("for

Issue 1 May 199262

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

KIND_OF_BLOCK use ... ") explicitly associates each of the previous
enumerated values with a corresponding 4 bit pattern which will really be
found in the data. The same approach is used for the data type declarations
of PARITY, KIND_OF_BEACONand SYNCHRO_PATTERN. Note that for
SYNCHRO_PATTERN, there is only one bit pattern corresponding to the
hexadecimal number CD04.

• A list of the "numeric types" used. The first numeric type declared (the
statement "type ON_BOARD_CLOCK_PIP is range 0 .. 16777215 ")
specifies an integer value type which has a decimal range of 0 to 16777215.
The following statement ("for ON_BOARD_CLOCK_PIP’size use 24 ")
declares the integer as a 24 bit field. Again this is repeated for the other
numeric types INTEGER_12_BITS , PRESSURE, POWERand DIGIT .

Figure 8-8 which is the continuation of Figure 8-7 shows two sets of Ada declarations:

• The "logical description" shows the structured type DORIS_BLOCKwhich
declares between the Ada keywords "record "and "end record " a number
of elementary fields. Note that the first statement declares a structure
parameterised by the variable BLOCK_IDENTIFIER which is itself declared
of type KIND_OF_BLOCK in Figure 8-7. The variables SYNCHROand
DATE_LSBare declared also in Figure 8-7 of types SYNCHRO_PATTERNand
ON_BOARD_CLOCK_PIPrespectively. There follows the variant part of the
DORIS_BLOCKstructure which depends on the value of BLOCK_IDENTIFIER ,
and is introduced by the statement "case BLOCK_IDENTIFIER is ", and
terminates with the statement "end case ". For each possible value of
BLOCK_IDENTIFIER (the statement "when...=> "), the list of the variables
corresponding to the fields appearing for that case are defined.

This description does not yet indicate how these different elementary fields are physically located in
the telemetry frame. The "physical location of fields" section has the role of indicating the physical
location of each elementary field in the DORIS_BLOCKdescription. The statement "for DORIS_BLOCK
use " introduces a list starting with the keyword "record " which assigns every variable previously
declared a fixed physical location in the telemetry frame. For example, the statement
"BLOCK_IDENTIFIER at 1*WORD_16_BITS range 0 .. 3 ; " indicates that the field
BLOCK_IDENTIFIER starts at the second 16 bit word (word number 1) from the beginning of the
DORIS_BLOCKstructure and occupies bits 0 to 3 (bit 0 being the most significant bit
of the 16 bit word). This technique is used for each of the elementary fields.

This example shows how an existing powerful language can be used to:

• Define the logical structure with optional parts depending on the value stored
in a previous mandatory field.

• Define the physical representation of the elementary fields of a structure.

It should be noted that in using Ada as a data description language as demonstrated
above, it is not necessary to write the application in Ada or use an Ada compiler. In
fact, a knowledge of Ada is not required at all, if the a suitable user friendly DDR
generation tool is used. Only the data declaration aspects of the Ada language are
being used here and therefore an interpreter for only this part of the language is
required. This interpreter could be written in one of many programming languages,
as can the application using the descriptions.

Issue 1 May 199263

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 8-7: Example of an Ada DDR Describing the DORIS Equipment Telemetry

Issue 1 May 199264

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Figure 8-8: Example of an Ada DDR Describing the DORIS Equipment Telemetry (continued
from previous page)

Issue 1 May 199265

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Annex A

STANDARD FORMATTED DATA UNIT
ACRONYMS

Purpose:

This annex defines the acronyms which are used throughout this report to describe the
concepts and elements of the Standard Formatted Data Unit.

Issue 1 May 199266

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Annex A: Acronyms

ADID Authority Description Identifier
ADU Application Data Unit
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
CAO Control Authority Office
CA Control Authority
CAID Control Authority Identifier
CCSDS Consultative Committee for Space Data Systems
DDID Data Description Identifier
DDL Data Description Language
DDR Data Description Record
DDU Description Data Unit
DED Data Entity Dictionary
EOF End of File
ID Identifier
LVO LABEL-VALUE-Object
MACAO Member Agency Control Authority Office
PVL Parameter Value Language
RA Restricted ASCII
SFDU Standard Formatted Data Unit

Issue 1 May 199267

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

ANNEX B

STANDARD FORMATTED DATA UNIT
GLOSSARY

Purpose:

This annex defines key terms which are used throughout this report to describe the
concepts and elements of the Standard Formatted Data Unit.

Issue 1 May 199268

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Annex B: Glossary of Terms

Control Authority : An organisation under the auspices of CCSDS which supports the transfer and
usage of SFDUs by providing operational services of registration, archiving and dissemination
of data description data. It comprises:

• The CCSDS Secretariat supported by a CA Agent

• Member Agency Control Authority Offices (MACAOs)

Cross support : When one agency uses part of another agency’s data system resources to
complement its own system.

Data Description Language (DDL) : A language for describing the logical representation of data.

Data Description Record (DDR) (also referred to as Data Description Record Object): A syntactic
description for data entities.

Data Element : The smallest named item or items of data for a given application.

Data Entity : A named collection of data elements.

Data Entity Dictionary (DED) : A collection of semantic definitions for data entities.

Data Object : A collection of data elements that are packaged for or by a specific application.

Data Product : A collection of one or more data objects.

Delimitation : The method of specifying the end of a block of data.

Instance : A specific occurrence of values of a data entity.

Instance-dependent metadata : metadata that is applicable to only one data instance. For example,
catalogue data.

Instance-independent metadata : metadata that is applicable to many data instances. For example,
a format description that is applicable to many data instances.

Metadata : Data about other data.

Member Agency Control Authority Office (MACAO) : an individual CCSDS Member-Agency
organisation which has accepted the operational responsibilities and constraints on CA
operations. For any given Member Agency, there will in general be one primary MACAO and
one or more descendent MACAOs.

Open system data interchange : The process of transferring data from one open system to another.
An open system is one which uses publicly available formats and protocols, so that anyone can
communicate with the open system by following the open system standards. It should be noted
that open system does not imply an uncontrolled or unrestricted access to the data.

Reference environment : An environment in which the value of a REFERENCE statement is
understood to give one or more locations at which external data objects begin.

Issue 1 May 199269

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Semantic information : Information associated with data that defines the meaning of the data.

Syntactic information : Information associated with data that defines the format of the data.

Issue 1 May 199270

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

INDEX

$CCSDS1 . 19, 21-24, 56
$CCSDS2 . 24
ADID 5, 13-17, 19, 20, 22, 26, 39-45, 50, 53, 58, 61,

67
ADIDNAME 21, 22, 42-44, 58-60
ADU . 8-11, 15, 17, 39, 40, 67
Ancillary Data . 10, 39, 52
Application Data 5, 8-11, 15, 17, 18, 22, 39, 41, 43, 4

5, 46, 52, 55, 56, 61, 67
ASCII viii, 13, 20, 26, 28, 33, 52-54, 53-55, 58, 59, 6

7
ATTACHED . 19-21
Authority And Description Identifier 13, 43
Binary . 13, 27, 28, 55
Bit . 13, 61-63
CAID . 12, 13, 18, 26, 27, 43, 67
Catalogue 5, 10, 19, 34, 35, 39, 40, 46, 52, 53, 58, 6

9
Catalogue Attribute Object . 5
CCSD$$MARKER . 28
CCSD0001 . 15-17, 39, 41
CCSD0002 . viii, 15, 16, 45
CCSD0003 . 15-17, 19, 20, 22, 41
CCSD0004 . 15-17, 43
CCSD0005 . 15-17, 43
CCSD0009 . 15-17, 40
CCSDS ADID . 15, 16
CCSDS Defined Referencing Environment 20, 22
CCSDS Secretariat . iii, 69
Class ID 13-19, 26-29, 39-45, 50, 55
Class ID = C . 40, 42, 43
Class ID = D . 44, 50
Class ID = E . 44, 50
Class ID = I . 14, 19, 28, 41
Class ID = K . 14
Class ID = R . 55
Class ID = S . 14, 45
Class ID = Z . 17, 29, 39
Compound LVO 8, 9, 28, 29, 31, 36, 37, 39
Consultative Committee For Space Data Systems iii, viii, 67
Contiguous End-of-File . 28
Control Authority Identifier 12, 13, 67
Control Authority Office 13, 15, 58, 67, 69
Cross Support . 69
Data Administration Service . 17
Data Classes . 14
Data Description Identifier 13, 67
Data Description Record 42-44, 51, 61, 67, 69
Data Description Unit . 42, 44
Data Element . 5, 42, 49, 69
Data Entity . 5, 43, 44, 67, 69
Data Entity Dictionary 43, 44, 67, 69
Data Object 4-6, 11, 19-22, 27, 29, 34, 42-44, 48, 58,

60, 69
Data Product 9, 10, 17, 34, 44, 47, 48, 50, 55, 69
Data Unit 1, 4, 8-11, 15, 17, 39, 41, 48, 50, 66-68
DDID . 13, 18, 26, 27, 43, 67
DDR 41, 43, 44, 50, 52, 61-65, 67, 69
DDRID . 43, 44

DDU 8, 9, 11, 15, 17, 21, 22, 39, 41-45, 50, 58, 67
DED . 41, 43-45, 50, 67, 69
DEDID . 43, 44
Delimitation ID 13, 19, 26-28, 31-34, 50
Delimitation Parameter 13, 26-29, 31, 33, 36, 37
Delimitation Technique 13, 26-28, 33, 34, 58
Description Data Unit . . . 1, 8, 9, 11, 15, 17, 39, 41, 50, 6

7
Directory Name . 24, 25
EDU 8-12, 17, 18, 21, 22, 34, 39-41, 58
English Text . 16, 45
EOF . 19, 27, 30-38, 67
Exchange Data Unit 8-11, 17, 39
External Data Objects 15, 20-22, 70
Filenaming Specifications 23, 24
Heterogeneous . 3, 4
Hexadecimal . 61, 63
Hierarchical Structure . 46
Information Data Unit . 1
Instance-independent Metadata 69
Keywords . 20, 63
LABEL Field . 7, 20, 43
LABEL Statement . 19, 21
Label-Value-Object . 7, 11, 67
Length 9, 13, 22, 26-29, 34-38, 48, 50-54, 53, 54, 53

, 58
LVO 7-9, 11, 12, 14, 15, 18-24, 26-29, 31-34, 36-45,

50, 52, 53, 55, 56, 58, 61, 67
MACAO . 67, 69
Marker Pattern 28, 29, 34, 53, 58
Media 4, 6, 23, 26, 30-33, 47, 51, 56
Member Agencies . iii
Member Agency Control Authority Office 67, 69
Metadata 10, 15, 39, 41, 43-45, 49, 50, 69
Name_x . 20, 22
Packaging Techniques . 50, 58
Parameter Value Language viii, 18, 19, 67
PVL 5, 16, 19, 20, 56, 58, 60, 67
RA . 13, 15, 27, 31, 32, 43, 67
Random Access Media 30, 31, 33
Refenv . 20
REFERENCE . . . 1, 4, 12, 13, 15, 16, 18-25, 36, 37, 40-43

, 46, 48, 50, 56, 58, 69
REFERENCETYPE . 19-22, 56
Referencing Environment 19, 20, 22-24
Referencing LVO . 18-20, 22-24
Replacement Service 17-19, 41, 51
Restricted ASCII . 13, 26, 67
Sequential Access Media 31, 32
Sequential End-of-File . 28, 31, 35
Service Classes . 14, 16, 40
SFDU 1, 4-8, 10, 12, 14, 15, 17, 18, 23, 25, 34, 39, 4

1, 43, 45, 46, 50-53, 55, 56, 58-61,
67

SFDU Data Product . 10, 17
SFDU Users . 15
Shared End-of-File . 28, 33, 34
Simple LVO 8, 9, 11, 19, 28, 31, 32, 37, 61
Structure Classes . 14

Issue 1 May 199271

CCSDS Report for SFDUs: Structure and Construction Rules - A Tutorial

Structure Diagrams . 1
Structure Level 8, 9, 26, 31, 33, 36, 37
Structure Rules . 21, 22
SUPID . 43
Supplementary Data 3, 8, 10, 39, 45
Tutorial . iv, 1
User ADID . 16
VALUE Field . . . 7-9, 12-15, 18-22, 26, 28, 29, 31, 33, 37

-44, 53, 54, 53, 54, 56, 58, 61
Version ID 12, 13, 26, 27, 34, 36
Version ID = 1 . 12
Version ID = 3 . 27, 34, 36
Wildcard . 25, 56

Issue 1 May 199272

	Contents
	References
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8
	Annex A
	Annex B
	Index

