
CCSDS Historical Document
This document’s Historical status indicates that it is no longer current. It 
has either been replaced by a newer issue or withdrawn because it was 
deemed obsolete. Current CCSDS publications are maintained at the 
following location:

http://public.ccsds.org/publications/



RECOMMENDED PRACTICE 

Recommendation for Space Data System Practices 

MAGENTA BOOK 

SPACE LINK EXTENSION—
APPLICATION PROGRAM 

INTERFACE FOR THE FORWARD 
SPACE PACKET SERVICE 

CCSDS 916.3-M-1 

October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



 

Recommendation for Space Data System Practices 

SPACE LINK EXTENSION—
APPLICATION PROGRAM 

INTERFACE FOR THE FORWARD 
SPACE PACKET SERVICE 

RECOMMENDED PRACTICE 

CCSDS 916.3-M-1 

MAGENTA BOOK 
October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

AUTHORITY 
 
 

    
 Issue: Recommended Practice, Issue 1  

 Date: October 2008  

 Location: Washington, DC, USA  
    

This document has been approved for publication by the Management Council of the 
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus 
technical agreement of the participating CCSDS Member Agencies.  The procedure for 
review and authorization of CCSDS documents is detailed in the Procedures Manual for the 
Consultative Committee for Space Data Systems, and the record of Agency participation in 
the authorization of this document can be obtained from the CCSDS Secretariat at the 
address below. 
 
 
This document is published and maintained by: 
 

CCSDS Secretariat 
Space Communications and Navigation Office, 7L70 
Space Operations Mission Directorate 
NASA Headquarters 
Washington, DC 20546-0001, USA 

CCSDS 916.3-M-1 Page i October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

STATEMENT OF INTENT  

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially 
established by the management of its members. The Committee meets periodically to address 
data systems problems that are common to all participants, and to formulate sound technical 
solutions to these problems. Inasmuch as participation in the CCSDS is completely 
voluntary, the results of Committee actions are termed Recommendations and are not in 
themselves considered binding on any Agency.  

CCSDS Recommendations take two forms: Recommended Standards that are prescriptive 
and are the formal vehicles by which CCSDS Agencies create the standards that specify how 
elements of their space mission support infrastructure shall operate and interoperate with 
others; and Recommended Practices that are more descriptive in nature and are intended to 
provide general guidance about how to approach a particular problem associated with space 
mission support. This Recommended Practice is issued by, and represents the consensus of, 
the CCSDS members.  Endorsement of this Recommended Practice is entirely voluntary 
and does not imply a commitment by any Agency or organization to implement its 
recommendations in a prescriptive sense.  

No later than five years from its date of issuance, this Recommended Practice will be 
reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; 
(2) be changed to reflect the impact of new technologies, new requirements, or new 
directions; or (3) be retired or canceled.  

In those instances when a new version of a Recommended Practice is issued, existing 
CCSDS-related member Practices and implementations are not negated or deemed to be non-
CCSDS compatible. It is the responsibility of each member to determine when such Practices 
or implementations are to be modified.  Each member is, however, strongly encouraged to 
direct planning for its new Practices and implementations towards the later version of the 
Recommended Practice.  

CCSDS 916.3-M-1 Page ii October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FOREWORD 

This document is a technical Recommended Practice for use in developing ground systems 
for space missions and has been prepared by the Consultative Committee for Space Data 
Systems (CCSDS).  The Application Program Interface described herein is intended for 
missions that are cross-supported between Agencies of the CCSDS. 

This Recommended Practice specifies service type-specific extensions of the Space Link 
Extension Application Program Interface for Transfer Services specified by CCSDS 
(reference [4]).  It allows implementing organizations within each Agency to proceed with 
the development of compatible, derived Standards for the ground systems that are within 
their cognizance.  Derived Agency Standards may implement only a subset of the optional 
features allowed by the Recommended Practice and may incorporate features not addressed 
by the Recommended Practice. 

Through the process of normal evolution, it is expected that expansion, deletion, or 
modification of this document may occur.  This Recommended Practice is therefore subject 
to CCSDS document management and change control procedures, which are defined in the 
Procedures Manual for the Consultative Committee for Space Data Systems.  Current 
versions of CCSDS documents are maintained at the CCSDS Web site: 

http://www.ccsds.org/ 

Questions relating to the contents or status of this document should be addressed to the 
CCSDS Secretariat at the address indicated on page i. 

CCSDS 916.3-M-1 Page iii October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

At time of publication, the active Member and Observer Agencies of the CCSDS were: 
 
Member Agencies 
 

– Agenzia Spaziale Italiana (ASI)/Italy. 
– British National Space Centre (BNSC)/United Kingdom. 
– Canadian Space Agency (CSA)/Canada. 
– Centre National d’Etudes Spatiales (CNES)/France. 
– China National Space Administration (CNSA)/People’s Republic of China. 
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany. 
– European Space Agency (ESA)/Europe. 
– Federal Space Agency (FSA)/Russian Federation. 
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil. 
– Japan Aerospace Exploration Agency (JAXA)/Japan. 
– National Aeronautics and Space Administration (NASA)/USA. 

 
Observer Agencies 
 

– Austrian Space Agency (ASA)/Austria. 
– Belgian Federal Science Policy Office (BFSPO)/Belgium. 
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation. 
– Centro Tecnico Aeroespacial (CTA)/Brazil. 
– Chinese Academy of Sciences (CAS)/China. 
– Chinese Academy of Space Technology (CAST)/China. 
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia. 
– Danish National Space Center (DNSC)/Denmark. 
– European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT)/Europe. 
– European Telecommunications Satellite Organization (EUTELSAT)/Europe. 
– Hellenic National Space Committee (HNSC)/Greece. 
– Indian Space Research Organization (ISRO)/India. 
– Institute of Space Research (IKI)/Russian Federation. 
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary. 
– Korea Aerospace Research Institute (KARI)/Korea. 
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa. 
– Ministry of Communications (MOC)/Israel. 
– National Institute of Information and Communications Technology (NICT)/Japan. 
– National Oceanic and Atmospheric Administration (NOAA)/USA. 
– National Space Organization (NSPO)/Chinese Taipei. 
– Naval Center for Space Technology (NCST)/USA. 
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan. 
– Swedish Space Corporation (SSC)/Sweden. 
– United States Geological Survey (USGS)/USA. 

CCSDS 916.3-M-1 Page iv October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

DOCUMENT CONTROL 

 

Document Title Date Status 

CCSDS 
916.3-M-1 

Space Link Extension—Application 
Program Interface for the Forward 
Space Packet Service, 
Recommended Practice, Issue 1 

October 
2008 

Original issue 

    

    

 

 

CCSDS 916.3-M-1 Page v October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CONTENTS 

Section Page 

1  INTRODUCTION .......................................................................................................... 1-1 
 
1.1  PURPOSE ............................................................................................................... 1-1 
1.2  SCOPE .................................................................................................................... 1-1 
1.3  APPLICABILITY ................................................................................................... 1-1 
1.4  RATIONALE .......................................................................................................... 1-1 
1.5  DOCUMENT STRUCTURE ................................................................................. 1-2 
1.6  DEFINITIONS, NOMENCLATURE, AND CONVENTIONS ............................ 1-4 
1.7  REFERENCES ....................................................................................................... 1-7 

 
2  OVERVIEW ................................................................................................................... 2-1 

 
2.1  INTRODUCTION .................................................................................................. 2-1 
2.2  PACKAGE FSP SERVICE INSTANCES ............................................................. 2-1 
2.3  PACKAGE FSP OPERATIONS .......................................................................... 2-16 
2.4  SECURITY ASPECTS OF THE SLE FORWARD SPACE PACKET (FSP) 

TRANSFER SERVICE ........................................................................................ 2-18 
 
3  FSP SPECIFIC SPECIFICATIONS FOR API COMPONENTS ............................. 3-1 

 
3.1  API SERVICE ELEMENT ..................................................................................... 3-1 
3.2  SLE OPERATIONS ............................................................................................. 3-22 
3.3  SLE APPLICATION ............................................................................................ 3-23 
3.4  SEQUENCE OF DIAGNOSTIC CODES ............................................................ 3-25 

 
ANNEX A FSP SPECIFIC INTERFACES  (Normative) ............................................. A-1 
ANNEX B ACRONYMS  (Informative) ..........................................................................B-1 
ANNEX C INFORMATIVE REFERENCES  (Informative) ....................................... C-1 

Figure 

1-1  SLE Services and SLE API Documentation ................................................................. 1-3 
2-1  FSP Service Instances ................................................................................................... 2-2 
2-2  FSP Operation Objects ............................................................................................... 2-17 
 
 
Table 

2-1  Production Events Reported via the Interface IFSP_SIUpdate .................................... 2-5 
2-2  FSP Configuration Parameters Handled by the Service Element ................................. 2-9 
2-3  FSP FOP Parameters Handled by the Service Element .............................................. 2-10 

CCSDS 916.3-M-1 Page vi October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page vii October 2008 

CONTENTS (continued) 

Table Page 

2-4  FSP Status Parameters Handled by the Service Element ........................................... 2-11 
2-5  FSP Production Status ................................................................................................ 2-13 
2-6  Mapping of FSP Operations to Operation Object Interfaces ...................................... 2-18 
 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

1 INTRODUCTION 

1.1 PURPOSE 

The Recommended Practice Space Link Extension—Application Program Interface for 
Transfer Services—Core Specification (reference [5]) specifies a C++ API for CCSDS Space 
Link Extension Transfer Services.  The API is intended for use by application programs 
implementing SLE transfer services. 

Reference [5] defines the architecture of the API and the functionality that is independent of 
specific SLE service types. 

The purpose of this document is to specify extensions to the API needed for support of the 
Forward Space Packet Service defined in reference [3]. 

1.2 SCOPE 

This specification defines extensions to the SLE API in terms of: 

a) the FSP-specific functionality provided by API components; 

b) the FSP-specific interfaces provided by API components; and 

c) the externally visible behavior associated with the FSP interfaces exported by the 
components. 

It does not specify: 

a) individual implementations or products; 

b) the internal design of the components; and 

c) the technology used for communications. 

This Recommended Practice defines only interfaces and behavior that must be provided by 
implementations supporting the Forward Space Packet service in addition to the specification 
in reference [5]. 

1.3 APPLICABILITY 

The FSP Application Program Interface specified in this document supports version 1 of the 
FSP service, as specified in reference [3]. 

1.4 RATIONALE 

This Recommended Practice specifies the mapping of the Forward Space Packet service 
specification to specific functions and parameters of the SLE API.  It also specifies the 

CCSDS 916.3-M-1 Page 1-1 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

distribution of responsibility for specific functions between SLE API software and 
application software. 

The goal of this Recommended Practice is to create a standard for interoperability between: 

a) application software using the SLE API and SLE API software implementing the 
SLE API; and 

b) SLE user and SLE provider applications communicating with each other using the 
SLE API on both. 

This interoperability standard also allows exchangeability of different products implementing 
the SLE API, as long as they adhere to the interface specification of this Recommended 
Practice. 

1.5 DOCUMENT STRUCTURE 

1.5.1 ORGANIZATION 

This document is organized as follows: 

– section 1 provides purpose and scope of this Recommended Practice, identifies 
conventions, and lists definitions and references used throughout the document; 

– section 2 describes the extension of the API model defined in reference [5] to include 
support for the FSP service; 

– section 3 contains detailed specifications for the API components and for applications 
using the API; 

– annex A provides a formal specification of the API interfaces and data types specific 
to the FSP service; 

– annex B lists all acronyms used within this document; 

– annex C lists informative references. 

1.5.2 SLE SERVICE DOCUMENTATION TREE 

The SLE suite of Recommended Standards is based on the cross support model defined in the 
SLE Reference Model (reference [2]).  The services defined by the reference model 
constitute one of the three types of Cross Support Services: 

a) Part 1: SLE Services; 

b) Part 2: Ground Domain Services; and 

c) Part 3: Ground Communications Services. 

CCSDS 916.3-M-1 Page 1-2 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

The SLE services are further divided into SLE service management and SLE transfer 
services. 

The basic organization of the SLE services and SLE documentation is shown in figure 1-1.  
The various documents are described in the following paragraphs. 

Core Specification

Application
Programmer’s

Guide

SLE API for Transfer Services

Forward
SLE Service
Specifications

Return
SLE Service
Specifications

Summary of
Concept and

Rationale

Cross Support
Reference Model

Part 1: SLE Services

Cross Support Concept
Part 1: SLE Services

SLE Executive
Summary

Space Link Extension

Return SLE Service
Specifications

SLE Transfer Services

SLE Service
Management Suite

Internet Protocol for
Transfer Services

Forward SLE Service
Specifications

Legend: Recommended
Practice (Magenta)Report (Yellow)Report (Green)Recommended

Standard (Blue)
 

Figure 1-1:  SLE Services and SLE API Documentation 

a) Cross Support Reference Model—Part 1: Space Link Extension Services, a 
Recommended Standard that defines the framework and terminology for the 
specification of SLE services. 

b) Cross Support Concept—Part 1: Space Link Extension Services, a Report introducing 
the concepts of cross support and the SLE services. 

CCSDS 916.3-M-1 Page 1-3 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

c) Space Link Extension Services—Executive Summary, an Administrative Report 
providing an overview of Space Link Extension (SLE) Services.  It is designed to 
assist readers with their review of existing and future SLE documentation. 

d) Forward SLE Service Specifications, a set of Recommended Standards that provide 
specifications of all forward link SLE services. 

e) Return SLE Service Specifications, a set of Recommended Standards that provide 
specifications of all return link SLE services. 

f) Internet Protocol for Transfer Services, a Recommended Standard providing the 
specification of the wire protocol used for SLE transfer services. 

g) SLE Service Management Specifications, a set of Recommended Standards that 
establish the basis of SLE service management. 

h) Application Program Interface for Transfer Services—Core Specification, a 
Recommended Practice document specifying the generic part of the API for SLE 
transfer services. 

i) Application Program Interface for Transfer Services—Summary of Concept and 
Rationale, a Report describing the concept and rationale for specification and 
implementation of a Application Program Interface for SLE Transfer Services. 

j) Application Program Interface for Return Services, a set of Recommended Practice 
documents specifying the service type-specific extensions of the API for return link 
SLE services. 

k) Application Program Interface for Forward Services, a set of Recommended Practice 
documents specifying the service type-specific extensions of the API for forward link 
SLE services. 

l) Application Program Interface for Transfer Services—Application Programmer’s 
Guide, a Report containing guidance material and software source code examples for 
software developers using the API. 

1.6 DEFINITIONS, NOMENCLATURE, AND CONVENTIONS 

1.6.1 DEFINITIONS 

1.6.1.1 Definitions from TC Space Data Link Protocol 

This Recommended Practice makes use of the following terms defined in reference [1]: 

a) AD, BD, BC; 

b) Command Link Control Word (CLCW); 

c) Frame Operation Procedure (FOP); 

CCSDS 916.3-M-1 Page 1-4 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

d) Multiplexer Access Point (MAP); 

e) Virtual Channel (VC). 

1.6.1.2 Definitions from SLE Reference Model 

This Recommended Practice makes use of the following terms defined in reference [2]: 

a) Forward Space Packet service; 

b) operation; 

c) service provider (provider); 

d) service user (user); 

e) SLE transfer service instance; 

f) SLE transfer service production; 

g) SLE transfer service provision; 

h) space link data unit (SL-DU). 

1.6.1.3 Definitions from FSP Service 

This Recommended Practice makes use of the following terms defined in reference [3]: 

a) association; 

b) communications service; 

c) confirmed operation; 

d) invocation; 

e) parameter; 

f) performance; 

g) port identifier; 

h) return; 

i) service instance provision period; 

j) unconfirmed operation. 

1.6.1.4 Definitions from ASN.1 Specification 

This Recommended Practice makes use of the following terms defined in reference [6]: 

CCSDS 916.3-M-1 Page 1-5 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

a) Object Identifier; 

b) Octet String. 

1.6.1.5 Definitions from UML Specification 

This Recommended Practice makes use of the following terms defined in reference [C7]: 

a) Attribute; 

b) Base Class; 

c) Class; 

d) Data Type; 

e) Interface; 

f) Method. 

1.6.1.6 Definitions from API Core Specification 

This Recommended Practice makes use of the following terms defined in reference [4]: 

a) Application Program Interface; 

b) Component. 

1.6.2 NOMENCLATURE 

The following conventions apply throughout this Recommended Practice: 

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification; 

b) the word ‘should’ implies an optional, but desirable, specification; 

c) the word ‘may’ implies an optional specification; 

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact. 

1.6.3 CONVENTIONS 

This document applies the conventions defined in reference [4]. 

The model extensions in section 2 are presented using the Unified Modeling Language 
(UML) and applying the conventions defined in reference [4]. 

CCSDS 916.3-M-1 Page 1-6 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page 1-7 October 2008 

The FSP-specific specifications for API components in section 3 are presented using the 
conventions specified in reference [4]. 

The FSP-specific interfaces in annex A are specified using the conventions defined in 
reference [4]. 

1.7 REFERENCES 

The following documents contain provisions which, through reference in this text, constitute 
provisions of this Recommended Practice.  At the time of publication, the editions indicated 
were valid.  All documents are subject to revision, and users of this Recommended Practice 
are encouraged to investigate the possibility of applying the most recent editions of the 
documents indicated below.  The CCSDS Secretariat maintains a register of currently valid 
CCSDS documents. 

NOTE – A list of informative references is provided in annex C. 

[1] TC Space Data Link Protocol.  Recommendation for Space Data Systems Standards, 
CCSDS 232.0-B-1.  Blue Book.  Issue 1.  Washington, D.C.: CCSDS, September 2003. 

[2] Cross Support Reference Model—Part 1: Space Link Extension Services.  
Recommendation for Space Data System Standards, CCSDS 910.4-B-2.  Blue Book.  
Issue 2.  Washington, D.C.: CCSDS, October 2005. 

[3] Space Link Extension—Forward Space Packet Service Specification.  Recommendation 
for Space Data System Standards, CCSDS 912.3-B-1.  Blue Book.  Issue 1.  
Washington, D.C.: CCSDS, December 2004. 

[4] Space Link Extension—Application Program Interface for Transfer Services—Core 
Specification.  Specification Concerning Space Data System Standards, CCSDS 914.0-
M-1.  Magenta Book.  Issue 1.  Washington, D.C.: CCSDS, October 2008. 

[5] Programming Languages—C++.  International Standard, ISO/IEC 14882:2003.  2nd 
ed.  Geneva:  ISO, 2003. 

[6] Information Technology—Abstract Syntax Notation One (ASN.1): Specification of 
Basic Notation.  International Standard, ISO/IEC 8824-1:2002.  3rd ed.  Geneva:  ISO, 
2002. 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2 OVERVIEW 

2.1 INTRODUCTION 

This section describes the extension of the SLE API model in reference [5] for support of the 
FSP service.  Extensions are needed for the API components API Service Element and SLE 
Operations. 

In addition to the extensions defined in this section, the component API Proxy must support 
encoding and decoding of FSP-specific protocol data units. 

2.2 PACKAGE FSP SERVICE INSTANCES 

2.2.1 OVERVIEW 

The FSP extensions to the component API Service Element are defined by the package FSP 
Service Instances.  Figure 2-1 provides an overview of this package.  The diagram includes 
classes from the package API Service Element specified in reference [5], which provide 
applicable specifications for the FSP service. 

The package adds two service instance classes: 

a) FSP SI User, supporting the service user role;  and 

b) FSP SI Provider, supporting service provider role. 

These classes correspond to the placeholder classes I<SRV>_SI User and I<SRV>_SI 
Provider defined in reference [5]. 

Both classes are able to handle the specific FSP operations. 

For the class FSP SI User, this is the only extension of the base class SI User. 

The class FSP SI Provider adds three new interfaces: 

a) IFSP_SIAdmin by which the application can set FSP-specific configuration 
parameters; 

b) IFSP_FOPMonitor by which the application can initialize and update parameters 
related to the FOP machine;  and 

c) IFSP_SIUpdate by which the application must update dynamic status information, 
required for generation of status reports. 

These interfaces correspond to the placeholder interfaces I<SRV>_SIAdmin and 
I<SRV>_SIUpdate defined in reference [5].  For the FSP service, the conceptual interface 
I<SRV>_SIAdmin is split into the two interfaces IFSP_SIAdmin and 
IFSP_FOPMonitor because of the large number of parameters that must be handled. 

CCSDS 916.3-M-1 Page 2-1 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

API Service Instance
(from API Service Element)

<<CoClass>>

- return timeout period

SI Provider
(from API Service Element)

<<Internal>>

- report request type
- reporting cycle

SI User
(from API Service Element)

<<Internal>>

ISLE_SIAdmin
(from API Service Element)

<<Interface>>

FSP SI User
<<Internal>>

IFSP_SIAdmin
<<Interface>>

IFSP_SIUpdate
<<Interface>>

PacketStarted()
PacketRadiated()
PacketAcknowledged()
BufferEmpty()
PacketNotStarted()
ProductionStatusChange()
VCAborted()
NoDirectiveCapability()
DirectiveCapabilityOnline()
DirectiveCompleted()
EventProcCompleted()

Packet Last Processed
packet identification
packet status
production start time

FSP StatusInformation
<<Internal>>

production status
packet buffer available
number of AD packets received
number of BD packets received
number of AD packets processed
number of BD packets processed
number of AD packets radiated
number of BD packets radiated
number of packets acknowledged
expected sldu identifiation
expected directive identification
expected event invocation identification
directive invocation online

FSP Configuration
<<Internal>>

apid list
blocking timeout period
blocking usage
directive invocation enabled
map list
maximum frame length
maximum packet length
segment header
vc multiplexing control
vc multiplexing scheme
virtual channel
maximum packet buffer

FOP Monitor
<<Internal>>

fop sliding window
timeout type
timer initial
transmission limit
transmitter frame sequence number
fop state
map multiplexing control
map multiplexing scheme

FSP SI Provider
<<CoClass>>

1 0..11 0..1

1

1

1

1

1

1

1

1

1

1

1

1

Packet Last OK
<<Internal>>

packet identification
production stop time

1

0..1

1

0..1

IFSP_FOPMonitor
<<Interface>>

 

Figure 2-1:  FSP Service Instances 

FSP-specific service parameters are defined by the internal classes FSP Configuration and 
FOP Monitor.  The class FSP Status Information defines dynamic status parameters 
maintained by the service instance.  In addition, the service instance maintains a set of 
parameters for the last packet for which processing started and for the last packet for which 
processing was successfully completed.  These parameters are defined by the classes Packet 
Last Processed and Packet Last OK. 

CCSDS 916.3-M-1 Page 2-2 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

All specifications provided in this section refer to a single service instance.  If more than one 
service instance is used, each service instance must be configured and updated independently. 

2.2.2 COMPONENT CLASS FSP SI USER 

The class defines a FSP service instance supporting the service user role.  It ensures that SLE 
PDUs passed by the application and by the association are supported by the FSP service and 
handles the FSP operation objects defined in 2.3.  It does not add further features to those 
provided by the base class SI User. 

2.2.3 COMPONENT CLASS FSP SI PROVIDER 

The class defines a FSP service instance supporting the service provider role.  It exports the 
interfaces IFSP_SIAdmin for configuration of the service instance after creation, 
IFSP_FOPMonitor for update of FOP parameters, and IFSP_SIUpdate for update of 
dynamic status parameters during operation. 

2.2.3.1 Responsibilities 

2.2.3.1.1 Service Specific Configuration 

The service instance implements the interface IFSP_SIAdmin to set the FSP-specific 
configuration parameters defined by the class FSP Configuration.  The methods of this 
interface must be called after creation of the service instance.  When all configuration 
parameters (including those set via the interface ISLE_SIAdmin and the interface 
IFSP_FOPMonitor) have been set, the method 
ISLE_SIAdmin::ConfigCompleted() must be called.  This method verifies that all 
configuration parameter values are defined and are in the range defined in reference [3]. 

In addition, the interface IFSP_SIAdmin provides read access to the configuration 
parameters. 

2.2.3.1.2 Initialization and Update of FOP Parameters 

The service instance implements the interface IFSP_FOPMonitor for initialization and 
update of the parameters defined by the class FOP Monitor.  The API service instance uses 
these parameters only to respond to GET-PARAMETER invocations.  The application must 
initialize these parameters when configuring the service instance and update them whenever 
they change during the lifetime of the service instance. 

Changes of the parameter values might occur because of directives invoked by a service user 
on the same or on a different service instance, because of events detected by the FOP 
machine, or because of management action.  In order to ensure that the service instance 
always reports the correct parameter value, updates must be forwarded independent of the 
service instance state. 

CCSDS 916.3-M-1 Page 2-3 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page 2-4 October 2008 

2.2.3.1.3 Update of Dynamic Status Parameters 

The class implements the interface IFSP_SIUpdate to inform the service instance of 
specific events in the FSP production process.  The methods of this interface update status 
parameters defined by the classes FSP Status Information, Packet Last Processed, and Packet 
Last OK.  The events reported via IFSP_SIUpdate and the parameters updated via this 
interface are listed in table 2-1. 

In order to ensure that the status information is always up to date the events listed in table 
2-1 must be reported to the service instance during its complete lifetime, independent of the 
state of the service instance. 

In addition, the class derives some of the parameters in FSP Status Information from FSP 
PDUs exchanged between the service user and the service provider.  The methods used to 
update each of the parameters are defined in 3.1.4.13. 

The interface IFSP_SIUpdate provides read access to all status parameters. 

2.2.3.1.4 Generation of Notifications 

If events reported via the interface IFSP_SIUpdate require that a FSP–ASYNC–NOTIFY 
invocation be sent to the service user, the class generates and transmits the invocation if that 
is requested by the application and if the state of the service instance is ‘active’ or ‘ready’.  
The notifications that are generated and transmitted by the class are listed in table 2-1.  The 
application can opt not to use this feature, but to generate the notification itself and transmit 
it using the interface ISLE_ServiceInitiate. 

2.2.3.1.5 Handling of the FSP–GET-PARAMETER Operation 

The class responds autonomously to FSP–GET–PARAMETER invocations.  It generates the 
appropriate FSP–GET–PARAMETER return using the parameters maintained by the classes 
FSP Configuration, FOP Monitor, and FSP Status Information. 

2.2.3.1.6 Status Reporting 

The class generates FSP–STATUS–REPORT invocations when required using the 
parameters maintained by the classes FSP Status Information, Packet Last Processed, and 
Packet Last OK. 

2.2.3.1.7 Processing of FSP Protocol Data Units 

The class ensures that SLE PDUs passed by the application and by the association are 
supported by the FSP service and handles the FSP operation objects defined in 2.3. 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



 

Table 2-1:  Production Events Reported via the Interface IFSP_SIUpdate C
C

SD
S 916.3-M

-1 
Page 2-5 

O
ctober 2008

NOTE – The notification type actually transmitted depends on the method arguments and partially or the value of the production 
status. 

C
C

SD
S R

EC
O

M
M

EN
D

ED
 PR

A
C

TIC
E: A

PI FO
R

 TH
E SLE FSP SER

V
IC

E 

Event Method Arguments Status parameters updated Notification sent 

Processing of a packet 
started. 

PacketStarted packet id 
transmission mode 
start time 
available buffer size 

packet id last processed 
production start time 
packet status 
number of AD packets 
processed (See Note 1) 
number of BD packets 
processed (See Note 2) 
packet buffer available 
 

packet processing 
started 

Radiation of a packet 
completed 

PacketRadiated packet id 
transmission mode 
radiation end time 
(See Note 2) 

packet id last OK (See Note 
2)  
packet status 
production stop time(See 
Note 2)  
number of AD packets 
radiated(See Note 1)  
number of BD packets 
radiated(See Note 2) 

packet radiated 

All segments of an AD 
packet acknowledged via 
the CLCW 

PacketAcknowledged packet id 
acknowledge time 

packet id last OK 
packet status 
production stop time 
number of packets 
acknowledged 

packet acknowledged 

The packet buffer is empty BufferEmpty  packet buffer available buffer empty 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



 

Event Method Arguments Status parameters updated Notification sent 

C
C

SD
S 916.3-M

-1 
Page 2-6 

O
ctober 2008

C
C

SD
S R

EC
O

M
M

EN
D

ED
 PR

A
C

TIC
E: A

PI FO
R

 TH
E SLE FSP SER

V
IC

E 

Processing of a packet 
could not be started 
because  
the latest production time 
expired; 
the production status was 
interrupted; 
The required transmission 
mode capability was not 
available 

PacketNotStarted packet id 
transmission mode 
start time 
failure reason 
affected packets list 
available buffer size 

packet id last processed 
packet status 
production start time 
packet buffer available 

sldu expired 
production interrupted 
transmission mode 
mismatch 

The production status 
changed 

ProductionStatusChange production status 
affected packets list 
(See Note 4) 
fop alert (See Note 5)
available buffer size 

production status 
packet status (See Note 3) 
packet buffer available 

production operational 
production interrupted 
production halted 
transmission mode 
capability change 
transmission mode 
mismatch 

The VC was aborted by a 
directive 

VCAborted affected packets list 
(See Note 4) 
available buffer size 

packet status (See Note 3) 
production status 
packet buffer available 

VC aborted 

The service instance with 
directive invocation 
capability is no longer 
bound 

NoDirectiveCapability  directive invocation online no invoke directive 
capability on this VC 

A service instance with 
directive invocation 
capability has bound  

DirectiveCapabilityOnl
ine 

 directive invocation online invoke directive 
capability on this VC 
established 

Processing of a directive 
completed 

DirectiveCompleted directive id 
result 
fop alert (See Note 6) 

 positive confirm 
response to directive 
negative confirm 
response to directive 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



 

 

C
C

SD
S R

EC
O

M
M

EN
D

ED
 PR

A
C

TIC
E: A

PI FO
R

 TH
E SLE FSP SER

V
IC

E 

C
C

SD
S 916.3-M

-1 
Page 2-7 

O
ctober 2008

Event Method Arguments Status parameters updated Notification sent 

Processing of a thrown 
event completed 

EventProcCompleted event invocation id 
event proc result 

 action list completed 
action list not 
completed 
event condition 
evaluated to false 

NOTES 

1 If the transmission mode is sequence controlled. 

2 If the transmission mode is expedited. 

3 If the packet id last processed is contained in the affected packets list argument. 

4 If no packets were affected, the list is empty. 

5 Only needed in case of a transmission mode capability change. 

6 Only needed in case of a negative result. 

 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2.2.3.1.8 Processing of FSP–TRANSFER–DATA Invocations 

For incoming FSP–TRANSFER–DATA invocations the class performs the checks defined in 
3.1.5.1 in addition to those defined in reference [4]. 

In contrast to standard handling of confirmed operations, the service instance is allowed to pass 
the operation object to the application after setting the correct diagnostic if these checks fail.  
The application is expected to insert the next expected packet identification and the available 
buffer size into the operation object and pass it back to service instance via the interface 
ISLE_ServiceInitiate.  The reasons for this specification are explained in 2.2.9.3. 

2.2.3.1.9 Processing of FSP–THROW-EVENT invocations 

In contrast to standard handling of confirmed operations, the service instance is allowed to 
pass the operation object to the application after setting the correct diagnostic if checks 
performed by the service element fail.  The application is expected to insert the next expected 
event invocation identifier into the operation object and pass it back to service instance via 
the interface ISLE_ServiceInitiate.  The reasons for this specification are explained 
in 2.2.9.3. 

2.2.3.1.10 Processing of FSP–INVOKE-DIRECTIVE invocations 

For incoming FSP–INVOKE-DIRECTIVE invocations the class verifies that the service 
instance has the capability to invoke directives in addition to the checks defined in reference [5]. 

In contrast to standard handling of confirmed operations, the service instance is allowed to 
pass the operation object to the application after setting the correct diagnostic if checks 
performed by the service element fail.  The application is expected to insert the next expected 
directive invocation identifier into the operation object and pass it back to service instance 
via the interface ISLE_ServiceInitiate.  The reasons for this specification are 
explained in 2.2.9.3. 

2.2.4 INTERNAL CLASS FSP CONFIGURATION 

The class defines the configuration parameters that can be set via the interface 
IFSP_SIAdmin.  These parameters are defined by reference [3].  Table 2-2 describes how 
the service instance uses these parameters.  The column labeled ‘Upd’ indicates whether an 
update of these parameters is allowed after the initial configuration has been completed.  
Table 2-2 only indicates which parameters must not be modified in order to ensure proper 
operation of the API.  Updates allowed by the table might be inhibited because of other 
constraints. 

CCSDS 916.3-M-1 Page 2-8 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Table 2-2:  FSP Configuration Parameters Handled by the Service Element 

Parameter Used for  Upd 

apid-list FSP–GET–PARAMETER Y 

blocking-timeout-period FSP–GET–PARAMETER Y 

blocking-usage FSP–GET–PARAMETER Y 

directive-invocation-
enabled 

FSP–GET–PARAMETER 
Checking of FSP-INVOKE-DIRECTIVE 

Y 

map-list FSP–GET–PARAMETER 
Checking of FSP-TRANSFER-DATA 

Y 

maximum-frame-length FSP–GET–PARAMETER Y 

maximum-packet-length FSP–GET–PARAMETER 
Checking of FSP-TRANSFER-DATA 

Y 

segment-header FSP–GET–PARAMETER Y 

vc-multiplexing-control FSP–GET–PARAMETER Y 

vc-multiplexing-scheme FSP–GET–PARAMETER Y 

virtual-channel FSP–GET–PARAMETER Y 

maximum-packet-buffer-
size 

Value of the status parameter packet buffer available after 
configuration, FSP-STOP, FSP-PEER-ABORT, and 
protocol abort 

N 

CCSDS 916.3-M-1 Page 2-9 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2.2.5 INTERNAL CLASS FOP MONITOR 

The class defines the FOP parameters that can be initialized and updated via the interface 
IFSP_FOPMonitor.  These parameters are defined by reference [3].  Table 2-3 describes 
how the service element uses these parameters.  The parameters ‘map multiplexing scheme’ 
and ‘map multiplexing control’ are assigned to this class because ‘map multiplexing control’ 
can be modified by a service user via a directive in the same way as FOP control parameters. 

Table 2-3:  FSP FOP Parameters Handled by the Service Element 

Parameter Used for  

fop-sliding-window FSP–GET–PARAMETER 

timeout-type FSP–GET–PARAMETER 

timer-initial FSP–GET–PARAMETER 

transmission-limit FSP–GET–PARAMETER 

transmitter-frame-sequence-number FSP–GET–PARAMETER 

fop-state FSP–GET–PARAMETER 

map-multiplexing-control FSP–GET–PARAMETER 

map-multiplexing-scheme FSP–GET–PARAMETER 

2.2.6 INTERNAL CLASS FSP STATUS INFORMATION 

The class defines status parameters handled by the service instance.  The parameters are 
defined by reference [3].  Table 2-4 describes how the service element updates each of the 
parameters and how it uses the parameters. 

CCSDS 916.3-M-1 Page 2-10 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Table 2-4:  FSP Status Parameters Handled by the Service Element 

Parameter Update Used for 
production-status – set by methods of IFSP_SIUpdate status reports 

notifications 

packet-buffer-
available 

– set to maximum at configuration time 
– set by methods of IFSP_SIUpdate 
– extracted from FSP-TRANSFER-DATA returns 
– reset to maximum following a notification ‘buffer 

empty’ 
– reset to maximum following FSP–STOP, 

FSP–PEER–ABORT and protocol abort 

status reports 
notifications 

number-of-AD-
packets-received 

– set to zero at configuration time 
– incremented for every FSP-TRANSFER-DATA 

return with transmission mode ‘sequence 
controlled’ and a positive result 

status reports 

number-of-BD-
packets-received 

– set to zero at configuration time 
– incremented for every FSP-TRANSFER-DATA 

return with transmission mode ‘expedited’ and a 
positive result 

status reports 

number-of-AD-
packets-processed 

– set to zero at configuration time 
– incremented with every call to PacketStarted() 

and PacketNotStarted() with the argument 
transmission mode set to ‘sequence controlled’ 

status reports 

number-of-BD-
packets-processed 

– set to zero at configuration time 
– incremented with every call to PacketStarted() 

and PacketNotStarted() with the argument 
transmission mode set to ‘expedited’ 

status reports 

number-of-AD-
packets-radiated 

– set to zero at configuration time 
– incremented with every call to 
PacketRadiated() with the argument 
transmission mode set to ‘sequence controlled’ 

status reports 

number-of-BD-
packets-radiated 

– set to zero at configuration time 
– incremented with every call to 
PacketRadiated() with the argument 
transmission mode set to ‘expedited’ 

status reports 

number-of-packets-
acknowledged 

– set to zero at configuration time 
– incremented with every call to 
PacketAcknowledged() 

status reports 

CCSDS 916.3-M-1 Page 2-11 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Parameter Update Used for 
expected-sldu-
identification 

– set to zero at configuration time 
– copied from the first packet identification parameter 

of FSP-START invocations if the application 
transmits a return with a positive result. 

– copied from packet identification of FSP-
TRANSFER-DATA returns 

FSP-GET-
PARAMETER 

expected-directive-
identification 

– set to zero at configuration time 
– extracted from FSP-INVOKE-DIRECTIVE returns 

FSP-GET-
PARAMETER 

expected-event-
invocation-
identification 

– set to zero at configuration time 
– extracted from FSP-THROW-EVENT returns 

FSP-GET-
PARAMETER 

directive-
invocation-online 

See Note FSP-GET-
PARAMETER 

NOTE – The value of the parameter directive-invocation-online at the time 
the service instance is configured must be specified by the application if directive 
invocation is not enabled for the service instance.  Subsequently, the API updates 
the parameter when the methods NoDirectiveCapability() and 
DirectiveCapabilityOnline() are invoked on the interface 
IFSP_SIUpdate.  For service instances with invocation capability enabled, the 
parameter is initialized to ‘no’ and subsequently set to ‘yes’ when the user binds 
and to ‘no’ when the user unbinds or the association is aborted. 

2.2.7 INTERNAL CLASS PACKET LAST PROCESSED 

The class defines the parameters maintained by the service instance for the last packet for 
which processing started or was attempted.  These parameters are defined in reference [3]. 

All parameters are set via methods in the interface IFSP_SIUpdate (see table 2-1) and are 
used in status reports and notifications. 

2.2.8 INTERNAL CLASS PACKET LAST OK 

The class defines the parameters maintained by the service instance for the last packet for 
which processing was completed.  For BD packets completion implies that the packet was 
radiated.  AD packets are considered complete when all segments of the packet have been 
acknowledged by a CLCW. 

These parameters are defined in reference [3].  All parameters are set via methods in the 
interface IFSP_SIUpdate (see table 2-1) and are used in status reports and notifications. 

CCSDS 916.3-M-1 Page 2-12 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2.2.9 FEATURES NOT HANDLED BY THE PROVIDER SIDE SERVICE INSTANCE 

2.2.9.1 Introduction 

As a general approach, this specification only states what the API is required to do.  Features 
not identified in this specification cannot be expected from a conforming implementation.  
This subsection deviates from this approach by discussing features not provided by the API, with 
the intention to clarify the borderline between the application and the API Service Element. 

In addition, this subsection outlines the rationale for the distribution of responsibilities 
between the application and the API Service Element in this specification. 

2.2.9.2 Production Status 

Reference [3] defines the parameter production status, which reflects the state of the FSP 
production engine.  The value of the production status is not only included in status reports 
and notifications, but also determines whether invocations of the operations FSP–BIND and 
FSP–START can be accepted or not.  The production status also has an impact on processing 
of FSP–TRANSFER–DATA operations, which is discussed in 2.2.9.4. 

Table 2-5 lists the possible values of the production status and the required processing of 
BIND and START invocations. 

Table 2-5:  FSP Production Status 

Production Status BIND invocation START invocation 

halted reject (out of service) reject (out of service) 

configured accept accept 

operational accept accept 

interrupted accept reject (unable to comply) 

In a multi-threaded environment, the value of the production status can change concurrently 
with processing within the service element.  That implies that the value can change after a 
PDU has been processed by the service element but before the same PDU is handled by the 
application.  Because the service element cannot guarantee that the result of a test is still 
valid when the PDU reaches the application, this specification does not require that the 
service element check the production status. 

This specification does not exclude that implementations of the service element check the 
production status and reject BIND or START invocations if required.  If both the API and 
the application are single-threaded, the application could rely on such checks.  However, 
applications cannot expect that other implementations provide the same service.  Therefore, 
applications wishing to maintain substitutability of API components should not rely on such 
behavior. 

CCSDS 916.3-M-1 Page 2-13 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2.2.9.3 TRANSFER-DATA, INVOKE DIRECTIVE, and THROW-EVENT 

For FSP–TRANSFER–DATA returns, reference [3] requires that the provider inserts the 
next expected packet identification and the available packet buffer size.  For FSP-INVOKE-
DIRECTIVE and FSP-THROW-EVENT returns, reference [3] requires that the provider 
inserts the next expected directive identification or event invocation identification, 
respectively.  These parameters are available to the service element via the procedures 
described in 2.2.6.  However, the following must be considered. 

A service user is not required to wait for a FSP–TRANSFER–DATA return before transmitting 
the next FSP–TRANSFER–DATA invocation.  Therefore, several FSP–TRANSFER–DATA 
invocations can be in transit.  Depending on the implementation of the service element and of 
the provider application, FSP–TRANSFER–DATA invocations might be queued between the 
service element and the application.  In such a case, the service element cannot know what 
values to insert for the next packet identification and the available buffer size when it needs to 
generate a FSP–TRANSFER–DATA return with a negative result.  The same considerations 
apply to the FSP-INVOKE-DIRECTIVE and FSP–THROW–EVENT operations. 

Therefore, this Recommended Practice defines a procedure for the operations FSP–
TRANSFER–DATA, FSP-INVOKE-DIRECTIVE, and FSP–THROW–EVENT, which 
deviates from the standard approach described in reference [5].  When a check performed by 
the service element fails, the service element may set the appropriate diagnostic in the 
operation object and pass the operation object to the application.  The application is expected 
to check the result of an invocation.  If the result is negative, the application shall insert the 
next expected packet identification and the available buffer size, the next expected directive 
identification, or the next expected event invocation identification into the operation object 
and then pass it back to the service element using the method InitiateOpReturn() in 
the interface ISLE_ServiceInitiate. 

This specification does not exclude that implementations generate a FSP–TRANSFER–
DATA return, a FSP-INVOKE-DIRECTIVE return, or a FSP–THROW–EVENT return if it 
is possible to insert the correct values for the return parameters.  An implementation can 
apply any of the following approaches: 

a) an implementation can always pass invocations for which a check has failed to the 
application; 

b) an implementation can prevent queuing of invocations by withholding an invocation 
until the previous invocation has been confirmed by the application.  In that case, it 
can always generate the appropriate return when needed; or 

c) an implementation can decide to pass invocations to the application on a case-by-case 
basis. 

Applications wishing to maintain substitutability of API components should always expect to 
receive FSP–TRANSFER–DATA invocations, FSP-INVOKE-DIRECTIVE invocations, and 
FSP–THROW–EVENT invocations with a negative result from the service element. 

CCSDS 916.3-M-1 Page 2-14 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2.2.9.4 Processing of TRANSFER-DATA Invocations 

2.2.9.4.1 Blocked State of the Service Instance 

When a packet cannot be processed because the production status becomes non-operational or 
because the latest production start time expired the service instance becomes blocked and 
further FSP–TRANSFER–DATA invocations must be rejected.  In order to clear the situation, 
the service user must invoke a FSP–STOP operation followed by a FSP–START operation. 

The event causing the blocked state of the service instance can depend on the production status, 
which can change concurrently with processing in the service element.  In a multi-threaded 
environment, the service element cannot guarantee that a FSP–TRANSFER–DATA invocation 
that passed the test of the blocked state is still valid when it reaches the application.  Therefore, 
this specification does not require the service element to perform that check. 

This specification does not exclude that implementations check the blocked state of the 
service instance.  If both the API and the application are single-threaded, the application 
could rely on such checks.  However, applications cannot expect that other implementations 
provide the same service.  Applications wishing to maintain substitutability of API 
components must not rely on such behavior. 

2.2.9.4.2 Transmission Mode Capability 

When an AD packet cannot be processed because the required transmission mode capability 
is not available the AD mode becomes blocked and further AD packets must be rejected.  In 
order to clear the situation, the user must invoke an FSP-TRANSFER-DATA operation with 
the transmission mode ‘sequence controlled and unblock AD’. 

The transmission mode capability can change and the AD service can become blocked 
concurrently with processing in the service element.  In a multi-threaded environment, the 
service element cannot guarantee that a FSP–TRANSFER–DATA invocation that passed the 
test of the AD blocked state is still acceptable when it reaches the application.  Therefore, 
this specification does not require the service element to perform that check. 

This specification does not exclude that implementations check whether the AD service is 
blocked.  If both the API and the application are single-threaded, the application could rely 
on such checks.  However, applications cannot expect that other implementations provide the 
same service.  Applications wishing to maintain substitutability of API components must not 
rely on such behavior. 

2.2.9.4.3 Checking of Time Parameters 

FSP–TRANSFER–DATA invocations carry parameters that specify the earliest and latest 
production start times.  Reference [3] requires the service provider to check that these times 
are not expired at the time the invocation reaches the provider.  It cannot be excluded that 
such a time expires after the invocation has been processed by the service element, but before 
it reaches the application.  Therefore, this specification does not require the service element 

CCSDS 916.3-M-1 Page 2-15 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

to perform these checks.  The service element is, however, required to verify that time 
periods are defined in a consistent manner. 

This Recommended Practice does not exclude that implementations check times against 
current time.  However, applications wishing to maintain substitutability of API components 
must not rely on such behavior. 

2.2.9.4.4 APID, Packet Version, and Packet Type 

Reference [3] requires that the FSP service provider verify that: 

a) the APID of a packet matches one of the entries in the list of permitted APIDs; 

b) the packet version is supported by CCSDS and the service instance;  and 

c) the packet type specifies telecommand. 

For these checks it is necessary to inspect the packet delivered by the parameter ‘data’ in the 
TRANSFER-DATA operation.  Because the SLE Application Program Interface generally 
handles space link data units as opaque data types, this specification does not require a 
service element to perform these checks. 

This specification does not exclude that implementations check the APID, packet version, 
and packet type.  However, applications wishing to maintain substitutability of API 
components must not rely on such behavior. 

2.2.9.5 Production Time 

Reference [3] defines a production period, i.e.,  the period in which the FSP production 
engine is able to process packets.  This period must overlap with the scheduled provision 
period of the service instance but need not be the same.  Reference [3] requires the service 
provider to check the validity of FSP–START invocations and FSP–TRANSFER–DATA 
invocations against the production period. 

This specification does not require a service element to perform these checks, as they are 
related to service production and not to service provisioning. 

2.3 PACKAGE FSP OPERATIONS 

Figure 2-2 shows the operation object interfaces required for the FSP service.  The package 
FSP Operations adds operation objects for the following FSP operations: 

a) FSP–START; 

b) FSP–TRANSFER–DATA; 

c) FSP–ASYNC–NOTIFY; 

CCSDS 916.3-M-1 Page 2-16 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

d) FSP–STATUS–REPORT; 

e) FSP–GET–PARAMETER; 

f) FSP–THROW–EVENT; 

g) FSP–INVOKE–DIRECTIVE. 

For other operations the API uses the common operation objects defined in reference [5]. 

ISLE_Operation
(from SLE Operations)

<<Interface>>
ISLE_ConfirmedOperation

(from SLE Operations)

<<Interface>> <<Inheritance>>

ISLE_Bind
(from SLE Operations)

<<Interface>>

ISLE_Unbind
(from SLE Operations)

<<Interface>>

ISLE_PeerAbort
(from SLE Operations)

<<Interface>>

ISLE_ScheduleStatusReport
(from SLE Operations)

<<Interface>>

ISLE_Stop
(from SLE Operations)

<<Interface>>

IFSP_Start
<<Interface>>

IFSP_TransferData
<<Interface>>

IFSP_StatusReport
<<Interface>>

IFSP_AsyncNotify
<<Interface>>

IFSP_GetParameter
<<Interface>>

IFSP_InvokeDirective
<<Interface>>

<<Inheritance>>
<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>> <<Inheritance>>
<<Inheritance>>

<<Inheritance>>
<<Inheritance>> IFSP_ThrowEvent

<<Interface>>

<<Inheritance>>

 

Figure 2-2:  FSP Operation Objects 

CCSDS 916.3-M-1 Page 2-17 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Table 2-6 maps FSP operations to operation object interfaces. 

Table 2-6:  Mapping of FSP Operations to Operation Object Interfaces 

FSP Operation Operation Object Interface Defined in Package 

FSP–BIND ISLE_Bind SLE Operations 

FSP–UNBIND ISLE_Unbind SLE Operations 

FSP–START IFSP_Start FSP Operations 

FSP–STOP ISLE_Stop SLE Operations 

FSP–TRANSFER–DATA IFSP_TransferData FSP Operations 

FSP–ASYNC–NOTIFY IFSP_AsyncNotify FSP Operations 

FSP–SCHEDULE–STATUS–REPORT ISLE_ScheduleStatusReport SLE Operations 

FSP–STATUS–REPORT IFSP_StatusReport FSP Operations 

FSP–GET–PARAMETER IFSP_GetParameter FSP Operations 

FSP–THROW–EVENT IFSP_ThrowEvent FSP Operations 

FSP–INVOKE–DIRECTIVE IFSP_InvokeDirective FSP Operations 

FSP–PEER–ABORT ISLE_PeerAbort SLE Operations 

2.4 SECURITY ASPECTS OF THE SLE FORWARD SPACE PACKET (FSP) 
TRANSFER SERVICE 

2.4.1 SECURITY BACKGROUND/INTRODUCTION 

The SLE transfer services explicitly provide authentication and access control. Additional 
security capabilities, if required, are levied on the underlying communication services that 
support the SLE transfer services. The SLE transfer services are defined as layered 
application services operating over underlying communication services that must meet 
certain requirements but which are otherwise unspecified. Selection of the underlying 
communication services over which real SLE implementations connect is based on the 
requirements of the communicating parties and/or the availability of CCSDS-standard 
communication technology profiles and proxy specifications. Different underlying 
communication technology profiles are intended to address not only different performance 
requirements but also different security requirements. Missions and service providers are 
expected to select from these technology profiles to acquire the performance and security 
capabilities appropriate to the mission. Specification of the various underlying 
communication technologies, and in particular their associated security provisions, are 
outside the scope of this Recommendation.  

CCSDS 916.3-M-1 Page 2-18 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

The SLE FSP transfer service transfers data that is destined for a mission spacecraft. As 
such, the SLE FSP transfer service has custody of the data for only a portion of the end-to-
end data path between MDOS and mission spacecraft. Consequently the ability of an SLE 
transfer service to secure the transfer of mission spacecraft data is limited to that portion of 
the end-to-end path that is provided by the SLE transfer service (i.e., the terrestrial link 
between the MDOS and the ground termination of the ground-space link to the mission 
spacecraft). End-to-end security must also involve securing the data as it crosses the ground-
space link, which can be provided by some combination of securing the mission data itself 
(e.g., encryption of the mission data within CCSDS space packets) and securing the ground-
space link (e.g., encryption of the physical ground-space link). Thus while the SLE FSP 
transfer service plays a role in the end-to-end security of the data path, it does not control and 
cannot ensure that end-to-end security. This component perspective is reflected in the 
security provisions of the SLE transfer services. 

2.4.2 STATEMENTS OF SECURITY CONCERNS 

This section identifies SLE FSP transfer service support for capabilities that responds to 
these security concerns in the areas of data privacy, data integrity, authentication, access 
control, availability of resources, and auditing.  

2.4.2.1 Data Privacy (Also Known As Confidentiality) 

This SLE FSP transfer service specification does not define explicit data privacy 
requirements or capabilities to ensure data privacy. Data privacy is expected to be ensured 
outside of the SLE transfer service layer, by the mission application processes that 
communicate over the SLE transfer service, in the underlying communication service that 
lies under the SLE transfer service, or some combination of both. For example, mission 
application processes might apply end-to-end encryption to the contents of the CCSDS space 
link data units carried as data by the SLE transfer service. Alternatively or in addition, the 
network connection between the SLE entities might be encrypted to provide data privacy in 
the underlying communication network. 

2.4.2.2 Data Integrity 

The SLE FSP service requires that each transferred space packet be accompanied by a 
sequence number, which must increase monotonically. Failure of a space packet to be 
accompanied by the expected sequence number causes the space packet to be rejected (see 
3.6.2.18.1 d) in reference [3]). This constrains the ability of a third party to inject additional 
command data into an active FSP transfer service instance. 

The SLE FSP transfer service defines and enforces a strict sequence of operations that 
constrain the ability of a third party to inject operation invocations or returns into the transfer 
service association between a service user and provider (see 4.2.2 in reference [3]). This 

CCSDS 916.3-M-1 Page 2-19 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

constrains the ability of a third party to seize control of an active FSP transfer service 
instance without detection. 

The SLE FSP transfer service requires that the underlying communication service transfer 
data in sequence, completely and with integrity, without duplication, with flow control that 
notifies the application layer in the event of congestion, and with notification to the 
application layer in the event that communication between the service user and the service 
provider is disrupted (see 1.3.1 in reference [3]). No specific mechanisms are identified, as 
they will be an integral part of the underlying communication service.  

2.4.2.3 Authentication 

This SLE FSP transfer service specification defines authentication requirements (see 3.1.5 in 
reference [3]), and defines initiator-identifier, responder-identifier, 
invoker-credentials, and performer-credentials parameters of the service 
operation invocations and returns that are used to perform SLE transfer service 
authentication. The procedure by which SLE transfer service operation invocations and 
returns are authenticated is described in annex F of the Cross Support Service Green Book 
(reference [C2]). The SLE transfer service authentication capability can be selectively set to 
authenticate at one of three levels: authenticate every invocation and return, authenticate only 
the BIND operation invocation and return, or perform no authentication. Depending upon the 
inherent authentication available from the underlying communication network, the security 
environment in which the SLE service user and provider are operating, and the security 
requirements of the spaceflight mission, the SLE transfer service authentication level can be 
adapted by choosing the SLE operation invocations and returns that shall be authenticated. 
Furthermore, the mechanism used for generating and checking the credentials and thus the 
level of protection against masquerading (simple or strong authentication) can be selected in 
accordance with the results of a threat analysis. 

2.4.2.4 Access Control 

This SLE FSP transfer service specification defines access control requirements (see 3.1.4 in 
reference [3]), and defines initiator-identifier and responder-identifier 
parameters of the service operation invocations and returns that are used to perform SLE 
transfer service access control. The procedure by which access to SLE transfer services is 
controlled is described in annex F of the Cross Support Service Green Book (reference [C2]).  

2.4.2.5 Availability of Resources 

The SLE transfer services are provided via communication networks that have some limit to 
the resources available to support those SLE transfer services. If these resources can be 
diverted from their support of the SLE transfer services (in what is commonly known as 
“denial of service”) then the performance of the SLE transfer services may be curtailed or 
inhibited. This SLE FSP transfer service specification does not define explicit capabilities to 

CCSDS 916.3-M-1 Page 2-20 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

prevent denial of service. Resource availability is expected to be ensured by appropriate 
capabilities in the underlying communication service. The specific capabilities will be 
dependent upon the technologies used in the underlying communication service and the 
security environment in which the transfer service user and provider operate. 

2.4.2.6 Auditing 

This SLE FSP transfer service specification does not define explicit security auditing 
requirements or capabilities. Security auditing is expected to be negotiated and implemented 
bilaterally between the spaceflight mission and the service provider. 

2.4.3 POTENTIAL THREATS AND ATTACK SCENARIOS 

The SLE FSP transfer service depends on unspecified mechanisms operating above the SLE 
transfer service (between a mission spacecraft application process and its peer application 
process on the ground), underneath the SLE transfer service in the underlying 
communication service, or some combination of both, to ensure data privacy 
(confidentiality). If no such mechanisms are actually implemented, or the mechanisms 
selected are inadequate or inappropriate to the network environment in which the mission is 
operating, an attacker could read the command data contained in the FSP protocol data units 
as they traverse the WAN between service user and service provider.  

The SLE FSP transfer service constrains the ability of a third party to seize control of an 
active SLE transfer service instance, or to inject extra command data into a service instance, 
but it does not specify mechanisms that would prevent an attacker from intercepting the 
protocol data units and replacing the contents of the data parameter. The prevention of such 
a replacement attack depends on unspecified mechanisms operating above the SLE transfer 
service (between a mission spacecraft application process and its peer application process on 
the ground), underneath the SLE transfer service in the underlying communication service, in 
bilaterally-agreed extra capabilities applied to the SLE transfer service (e.g., encryption of 
the data parameter) or some combination of the three. If no such mechanisms are actually 
implemented, or the mechanisms selected are inadequate or inappropriate to the network 
environment in which the mission is operating, an attacker could “hijack” an established SLE 
FSP transfer service instance and overwrite the commands in the protocol data units to 
subvert or destroy the operation of the spacecraft. 

If the SLE transfer service authentication capability is not used and if authentication is not 
ensured by the underlying communication service, attackers may somehow obtain valid 
initiator-identifier values and use them to initiate SLE transfer service instances 
by which they could subvert or destroy the mission.  

The SLE FSP transfer service depends on unspecified mechanisms operating in the 
underlying communication service to ensure that the supporting network has sufficient 
resources to provide sufficient support to legitimate users. If no such mechanisms are 
actually implemented, or the mechanisms selected are inadequate or inappropriate to the 

CCSDS 916.3-M-1 Page 2-21 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page 2-22 October 2008 

network environment in which the mission is operating, an attacker could prevent legitimate 
users from communicating with their spacecraft, causing degradation or even loss of the 
mission. 

If the provider of SLE FSP transfers service provides no security auditing capabilities, or if a 
user chooses not to employ auditing capabilities that do exist, then attackers may delay or 
escape detection long enough to do serious (or increasingly serious) harm to the mission.  

2.4.4 CONSEQUENCES OF NOT APPLYING SECURITY 

The consequences of not applying security to the SLE FSP transfer service are possible 
degradation and loss of ability to command the spacecraft, and even loss of the spacecraft 
itself. 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3 FSP SPECIFIC SPECIFICATIONS FOR API COMPONENTS 

3.1 API SERVICE ELEMENT 

3.1.1 SERVICE INSTANCE CREATION 

3.1.1.1 The service element shall allow creation of service instances supporting the 
Forward Space Packet (FSP) service. 

3.1.1.2 FSP service instances shall be provided to support the service provider role and the 
service user role. 

NOTE – As specified a by reference [5], a given implementation of the component API 
Service Element might support only the user role, only the provider role, or both 
roles. 

3.1.2 SERVICE INSTANCE CONFIGURATION 

3.1.2.1 The service element shall provide the interface IFSP_SIAdmin for configuration 
of a provider-side service instance after creation. 

3.1.2.2 The interface IFSP_SIAdmin shall provide methods to set the following 
configuration parameters, which the service element uses to respond to GET-PARAMETER 
invocations received from the service user: 

a) apid-list; 

b) blocking-timeout-period; 

c) blocking-usage; 

d) directive-invocation-enabled; 

e) map-list; 

f) maximum-frame-length; 

g) maximum-packet-length; 

h) segment-header; 

i) vc-multiplexing-control; 

j) vc-multiplexing-scheme; and 

k) virtual-channel. 

NOTE – These parameters are defined in reference [3] for the operation FSP-GET-
PARAMETER. 

CCSDS 916.3-M-1 Page 3-1 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.2.3 The interface IFSP_SIAdmin shall provide a method to set the initial value of the 
parameter directive-invocation-online if the configuration parameter 
directive-invocation-enabled is set to ‘no’. 

NOTE – The parameter directive-invocation-online is defined in reference 
[3] for the operation FSP-GET-PARAMETER.  Further processing of this 
parameter is described in 3.1.4.13. 

3.1.2.4 The interface IFSP_SIAdmin shall provide methods to set the following 
parameters, which the service instance uses to initialize parameters of the status report: 

a) the maximum size of the packet buffer shall be used to initialize the parameter 
packet-buffer-available; 

b) the value of the production status at the time the service instance is configured. 

NOTE – Further configuration parameters must be set using the interface 
ISLE_SIAdmin specified in reference [3] and the interface 
IFSP_FOPMonitor defined in 3.1.4. 

3.1.2.5 All configuration parameters must be set before the method 
ConfigCompleted() of the interface ISLE_SIAdmin is called.  If one of the 
parameters is omitted or the value of a parameter is not within the range specified by 
reference [3], the method ConfigCompleted() shall return an error. 

NOTES 

1 As defined in reference [5], the service element starts processing of the service 
instance only after successful configuration. 

2 The range of specific parameter values might be further constrained by service 
management.  The service element shall only check on the limits specified by 
reference [3]. 

3.1.2.6 Configuration parameters listed in 3.1.2.2 can be modified at any time during 
operation of the service instance.  The service element shall always use the most recent 
value. 

NOTE – Modification of these parameters during the scheduled provision period of the 
service instance might be inhibited by service management.  Such constraints 
must be handled by the application. 

3.1.2.7 Configuration parameters defined in 3.1.2.3 and 3.1.2.4 must not be modified after 
successful return of the method ConfigCompleted() defined in the interface 
ISLE_SIAdmin.  The effect of an attempt to set these parameters after completion of the 
configuration is undefined. 

CCSDS 916.3-M-1 Page 3-2 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.2.8 The values of the configuration parameters identified in 3.1.2.2 shall remain 
unmodified following an FSP-UNBIND or FSP-PEER-ABORT operation and following a 
protocol-abort. 

3.1.2.9 The interface IFSP_SIAdmin shall provide methods to retrieve the values of the 
configuration parameters.  The values returned by these methods before configuration has 
been completed are undefined. 

3.1.3 INITIALIZATION AND UPDATE OF FOP PARAMETERS 

3.1.3.1 The service element shall provide the interface IFSP_FOPMonitor for 
initialization and update of parameters related to the FOP machine in a provider side service 
instance. 

3.1.3.2 The interface IFSP_FOPMonitor shall provide methods to set the following 
parameters, which the service element uses to respond to GET-PARAMETER invocations 
received from the service user: 

a) fop-sliding-window; 

b) timeout-type; 

c) timer-initial; 

d) transmission-limit; 

e) transmitter-frame-sequence-number; 

f) fop-state; 

g) map-multiplexing-control; and 

h) map-multiplexing-scheme. 

NOTES 

1 These parameters are defined in reference [3] for the operation FSP-GET-
PARAMETER. 

2 The parameters map-multiplexing-scheme and map-multiplexing-
control are included in this interface because map-multiplexing-control 
can be modified by the service user via a directive in the same way as FOP control 
parameters. 

3.1.3.3 Initial values for the parameters listed in 3.1.3.2 must be set before the method 
ConfigCompleted() of the interface ISLE_SIAdmin is called.  If one of the 
parameters is omitted, or the value of a parameter is not within the range specified by 
reference [3], the method ConfigCompleted() shall return an error. 

CCSDS 916.3-M-1 Page 3-3 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.3.4 During the complete lifetime of the service instance the parameters listed in 3.1.3.2 
must be updated via the interface IFSP_FOPMonitor, whenever their value changes. 

NOTES 

1 Changes might occur because of directives invoked by a service user on the same or 
on a different service instance, because of events detected by the FOP machine, or 
because of management action. 

2 In order to ensure that the service instance always reports the correct parameter value, 
updates must be reported independent of the service instance state. 

3.1.3.5 The interface IFSP_FOPMonitor shall provide methods to retrieve the values of 
the parameters.  The values returned by these methods before configuration has been 
completed are undefined. 

3.1.4 STATUS INFORMATION 

3.1.4.1 Status Parameters 

3.1.4.1.1 The service element shall maintain status parameters for every service instance 
and use them for generation of status reports, notifications, and for FSP–GET–
PARAMETER returns. 

NOTES 

1 The parameters are defined in reference [3] for the operations FSP-ASYNC-
NOTIFY, FSP-STATUS-REPORT, and FSP-GET-PARAMETER. 

2 Handling of the parameter reporting-cycle defined for the FSP-GET-
PARAMETER operation shall be specified in reference [5]. 

3.1.4.1.2 The service element shall update the following status parameters in the methods 
of the interface IFSP_SIUpdate described in 3.1.4.2: 

a) packet-identification-last-processed; 

b) packet-status; 

c) production-start-time; 

d) packet-identification-last-OK; 

e) production-stop-time; 

f) production-status; 

g) number-of-AD-packets-processed; 

CCSDS 916.3-M-1 Page 3-4 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

h) number-of-BD-packets-processed; 

i) number-of-AD-packets-radiated; 

j) number-of-BD-packets-radiated; and 

k) number-of-AD-packets-acknowledged. 

NOTE – The initial values of these parameters following configuration of the service 
instance are defined in A4.3. 

3.1.4.1.3 The service element shall handle the parameter directive-invocation-
online as defined by the following specifications: 

NOTE – The parameter directive-invocation-online can be requested by an 
FSP-GET-PARAMETER invocation. 

a) when the parameter directive-invocation-enabled is ‘no’, the initial 
value shall be set by configuration of the service instance.  Subsequently the value 
shall be set to ‘yes’ when the method DirectiveCapabilityOnline() is 
invoked and it shall be set to ‘no’ when the method 
NoDirectiveCapability() is called on the interface ISLE_SIUpdate; 

b) when the parameter directive-invocation-enabled is ‘yes’, the initial value 
shall be set to ‘no’.  Subsequently the value shall be set to ‘yes’ when the user binds and 
it shall be reset to ‘no’ when the user unbinds or when the association is aborted. 

3.1.4.1.4 The service element shall handle the parameter expected-sldu-
identification as defined by the following specifications: 

NOTE – The parameter expected-sldu-identification can be requested by an 
FSP-GET-PARAMETER invocation. 

a) the parameter shall be set to zero when the service instance is configured; 

b) when the application transmits an FSP-START return with a positive result, the value 
shall be set to the value of the parameter first-packet-identification in 
the FSP-START invocation; 

c) the value shall be copied from the parameter packet-identification in every 
FSP-TRANSFER-DATA return issued by the application. 

3.1.4.1.5 The service element shall handle the parameter expected-directive-
identification as defined by the following specifications: 

NOTE – The parameter expected-directive-invocation-identifier can 
be requested by an FSP-GET-PARAMETER invocation. 

a) the parameter shall be set to zero when the service instance is configured; 

CCSDS 916.3-M-1 Page 3-5 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

b) the value shall be copied from every FSP-INVOKE-DIRECTIVE return issued by the 
application. 

3.1.4.1.6 The service element shall handle the parameter expected-event-
invocation-identifier as defined by the following specifications: 

NOTE – The parameter expected-event-invocation-identifier can be 
requested by an FSP-GET-PARAMETER invocation. 

a) the parameter shall be set to zero when the service instance is configured; 

b) the value shall be copied from every FSP-THROW–EVENT return issued by the 
application. 

3.1.4.1.7 The service element shall handle the parameter packet-buffer-available 
as defined by the following specifications: 

a) at configuration time, the value shall be copied from the configuration parameter 
maximum-packet-buffer, defined in  3.1.2.4; 

b) when the application transmits an FSP-TRANSFER-DATA return the value shall be 
copied from the parameter set by the application; 

c) the value shall be updated whenever passed as argument by one of the methods in the 
interface IFSP_SIUpdate; 

d) when the application transmits an FSP-STOP return with a positive result, the value 
shall be copied from the configuration parameter maximum-packet-buffer; 

e) when the application or the service element transmits an FSP-ASYNC-NOTIFY 
invocation with the parameter notification-type set to ‘buffer empty’, the value 
shall be copied from the configuration parameter maximum-packet-buffer; 

NOTE – The service element shall transmit the notification when requested by the 
application via the interface IFSP_SIUpdate specified in 3.1.4.2. 

f) following an FSP-PEER-ABORT operation and following protocol-abort, the value 
shall be copied from the configuration parameter maximum-packet-buffer. 

3.1.4.1.8 The service element shall handle the parameter number-of-AD-packets-
received as defined by the following specifications: 

a) the parameter shall be set to zero when the service instance is configured; 

b) the parameter shall be incremented whenever the application transmits an FSP-
TRANSFER-DATA return with a positive result and the parameter 
transmission-mode was set to ‘sequence controlled’ in the invocation. 

3.1.4.1.9 The service element shall handle the parameter number-of-BD-packets-
received as follows: 

CCSDS 916.3-M-1 Page 3-6 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

a) the parameter shall be set to zero when the service instance is configured; 

b) the parameter shall be incremented whenever the application transmits an FSP-
TRANSFER-DATA return with a positive result and the parameter 
transmission-mode was set to ‘expedited’ in the invocation. 

3.1.4.1.10 Except for the parameters packet-buffer-available and directive-
invocation-online, status parameters defined in this Recommended Practice shall not 
be modified as result of FSP-UNBIND, FSP-PEER-ABORT, or protocol abort. 

NOTE – The parameter directive-invocation-online shall be set to ‘no’ as 
result of an UNBIND operation or of an abort only when the directive invocation 
is enabled for the service instance.  If directive invocation is not enabled, the 
parameter shall not be modified.  It can, however, change in periods when the 
service instance is not bound. 

3.1.4.1.11 The interface IFSP_SIUpdate shall provide methods to retrieve the values of 
all status parameters.  The values returned by these methods shall be undefined before 
configuration has been completed. 

3.1.4.2 Update of Status Information by the Application 

3.1.4.2.1 The service element shall provide the interface IFSP_SIUpdate for a provider-
side service instance.  This interface shall be used by the application to inform the service 
element of specific events in the production process. 

3.1.4.2.2 When methods of this interface are called, the service element shall: 

a) update the status parameters according to the arguments passed with the method 
invocations; 

b) generate and transmit the following notifications if requested by the application and if 
the state of the service instance is ‘ready’ or ‘active’: 

1) ‘packet processing started’; 

2) ‘packet radiated’; 

3) ‘packet acknowledged’; 

4) ‘sldu expired’; 

5) ‘packet transmission mode mismatch’; 

6) ‘transmission mode capability change’; 

7) ‘buffer empty’; 

8) ‘no invoke directive capability on this VC’; 

CCSDS 916.3-M-1 Page 3-7 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

9) ‘invoke directive capability on the VC established’; 

10) ‘positive confirm response to directive’; 

11) ‘negative confirm response to directive’; 

12) ‘VC aborted’; 

13) ‘production interrupted’; 

14) ‘production halted’; 

15) ‘production operational’; 

16) ‘action list completed’; 

17) ‘action list not completed’; and 

18) ‘event condition evaluated to false’. 

NOTE – The application may opt to generate and transmit the notifications itself using the 
interface ISLE_ServiceInitiate as for other PDUs. 

3.1.4.2.3 The application must inform the service element of the events defined in  3.1.4.2.1 
to  3.1.4.12.1 via the interface IFSP_SIUpdate during the complete lifetime of the service 
instance, independent of the state of the service instance. 

NOTE – This applies regardless of whether the application opts or not opts to generate and 
transmit the notifications itself using the interface ISLE_ServiceInitiate 
as for other PDUs. 

3.1.4.2.4 The application should invoke the methods of the interface IFSP_SIUpdate 
when one of the events defined in  3.1.4.13.1 and  3.1.4.14.1 occurs to generate the 
appropriate notification and send it to the service user. 

NOTES 

1 The methods described in  3.1.4.2.1 to   3.1.4.12.1 update status parameters maintained 
by the service instance.  Status information must be updated in periods in which the 
service user is not connected such that it is up to date following a successful BIND 
operation.  Failure to report one of the events defined in 3.1.4.2.1 to 3.1.4.12.1 can 
result in inconsistent status information. 

2 Generation and transmission of notifications can be disabled by a method argument if 
this feature is not wanted. 

3 The methods described in 3.1.4.13.1 and 3.1.4.14.1 do not affect status information 
maintained by the service instance.  Therefore, an application generating and 
transmitting notifications itself does not need to call these methods. 

CCSDS 916.3-M-1 Page 3-8 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.4.3 Packet Processing Started 

3.1.4.3.1 The application calls the method PacketStarted() of the interface 
IFSP_SIUpdate whenever processing of a packet started. 

3.1.4.3.2 When calling the method PacketStarted() the application shall provide the 
following information using the method arguments: 

a) the identification and transmission mode of the packet for which processing started; 

b) the time at which processing started; and 

c) the available buffer size. 

3.1.4.3.3 The method PacketStarted() shall: 

a) increment the parameter number-of-AD-packets-processed or number-
of-BD-packets-processed depending on the transmission mode of the packet; 

b) update the parameters packet-identification-last-processed and 
production-start-time according to the arguments passed to the method; 

c) set the value of the parameter packet-status to ‘production started’; 

d) update the parameter packet-buffer-available according to the argument 
passed to the method; 

e) if requested by the application, send the notification ‘packet processing started’ if the 
state of the service instance is ‘ready’ or ‘active’. 

NOTES 

1 Transmission of the notification must not be requested unless a packet processing 
started report has been requested for the packet by the service user.  This cannot 
be checked by the service element. 

2 Because of performance considerations, the method does not perform any checks.  
The application must ensure that the preconditions specified in A4.3 are fulfilled. 

3.1.4.4 Packet Radiated 

3.1.4.4.1 The application shall call the method PacketRadiated() of the interface 
IFSP_SIUpdate whenever a packet completed radiation. 

3.1.4.4.2 When calling the method PacketRadiated() the application shall provide 
the following information using the method arguments: 

a) the identification and transmission mode of the packet for which radiation completed; 

CCSDS 916.3-M-1 Page 3-9 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

b) the time at which radiation completed. 

3.1.4.4.3 The method PacketRadiated() shall: 

a) increment the parameter number-of-AD-packets-radiated or number-
of-BD-packets-radiated depending on the transmission mode of the packet; 

b) if the transmission mode of the packet is ‘expedited’ set the parameters packet-
identification-last-OK and production-stop-time according to the 
arguments passed to the method; 

c) if the identification of the radiated packet equals the parameter packet-
identification-last-processed, set the parameter packet-status to 
‘radiated’; 

d) if requested by the application, send the notification ‘packet radiated’ if the state of 
the service instance is ‘ready’ or ‘active’. 

NOTES 

1 Transmission of the notification must not be requested unless a packet radiated 
report has been requested for the packet by the service user.  This cannot be 
checked by the service element. 

2 Because of performance considerations, the method shall not perform any checks.  
The application must ensure that the preconditions specified in A4.3 are fulfilled. 

3.1.4.5 Packet Acknowledged 

3.1.4.5.1 The application shall call the method PacketAcknowledged() whenever all 
components of a packet have been acknowledged by the space element via the associated 
stream of CLCW. 

3.1.4.5.2 When calling the method PacketAcknowledged() the application shall 
provide the following information using the method arguments: 

a) the identification of the packet that was acknowledged; 

b) the time at which the packet was acknowledged. 

3.1.4.5.3 The method PacketAcknowledged() shall: 

a) increment the parameter number-of-packets-acknowledged; 

b) set the parameters packet-identification-last-OK and production-
stop-time according to the arguments passed to the method; 

CCSDS 916.3-M-1 Page 3-10 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

c) if the identification of the acknowledged packet equals the parameter packet-
identification-last-processed, set the parameter packet-status to 
‘acknowledged’; 

d) if requested by the application, send the notification ‘packet acknowledged’ if the 
state of the service instance is ‘ready’ or ‘active’. 

NOTES 

1 Transmission of the notification must not be requested unless a packet 
acknowledged report has been requested for the packet by the service user.  This 
cannot be checked by the service element. 

2 Because of performance considerations, the method shall not perform any checks.  
The application must ensure that the preconditions specified in A4.3 are fulfilled. 

3.1.4.6 Packet Buffer Empty 

3.1.4.6.1 The application shall call the method BufferEmpty() whenever the packet 
buffer becomes empty because all packets were processed. 

3.1.4.6.2 The method BufferEmpty() shall: 

a) set the parameter packet-buffer-available to the value of the parameter 
maximum-packet-buffer, defined in 3.1.2.4; 

b) if requested by the application, send the notification ‘buffer empty’ if the state of the 
service instance is ‘ready’ or ‘active’. 

NOTE – The method must not be called when the packet buffer is cleared because of one 
of the events for which reference [3] requires discarding of buffered packets. 

3.1.4.7 Failure to Start Packet Processing 

3.1.4.7.1 The application shall call the method PacketNotStarted() whenever 
processing of a packet could not be started, because: 

a) the latest production start time was expired; 

b) the production status was ‘interrupted’;  or 

c) the required transition mode capability was not available. 

3.1.4.7.2 When calling the method PacketNotStarted() the application shall provide 
the following information using the method arguments: 

a) the identification and transmission mode of the packet which could not be started; 

b) the time at which processing was attempted; 

CCSDS 916.3-M-1 Page 3-11 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

c) the reason why processing could not be started; 

d) a list of identifiers of all packets that were or will be discarded because of the 
problem identified, excluding the packet for which the failure is reported; 

NOTE – The service element shall always insert the packet that could not be started 
into the FSP-ASYNC-NOTIFY parameter packet-identification-
list.  Therefore, this packet must not be included into the list provided by 
the caller.  If the packet for which failure is reported is the only packet that is 
discarded the list shall not be supplied. 

e) the available buffer size. 

3.1.4.7.3 The method PacketNotStarted() shall: 

a) increment the parameter number-of-AD-packets-processed or number-
of-BD-packets-processed depending on the transmission mode of the packet; 

b) set the parameters packet-identification-last-processed and 
production-start-time according to the arguments passed to the method; 

c) set the parameter packet-status according to reason supplied by the application: 

1) if the packet could not be started because the latest production start time expired, 
the packet-status shall be set to ‘expired’; 

2) if the packet could not be started because the production status was ‘interrupted’, 
the packet-status shall be set to ‘production not started’; 

3) if the packet could not be started because the required transmission mode 
capability was not available, the packet-status shall be set to ‘unsupported 
transmission mode’; 

d) update the parameter packet-buffer-available according to the argument 
passed to the method; 

e) if requested by the application, and if the state of the service instance is ‘ready’ or 
‘active’: 

1) if the packet could not be started because the latest production start time expired, 
the notification ‘sldu expired’ shall be sent; 

2) if the packet could not be started because the production status was ‘interrupted’, 
the notification ‘production interrupted’ shall be sent; 

3) if the packet could not be started because the required transmission mode capability 
was not available, the notification ‘transmission mode mismatch’ shall be sent. 

CCSDS 916.3-M-1 Page 3-12 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.4.8 Production Status Change 

3.1.4.8.1 The application shall call the method ProductionStatusChange() 
whenever the production status changes, including changes of the operational sub-states. 

3.1.4.8.2 If the change of the production status was caused by execution of the directive 
‘abort VC’, the method VCAborted() shall be called instead of the method 
ProductionStatusChange(). 

3.1.4.8.3 When calling the method ProductionStatusChange() the application 
shall provide the following information using the method arguments: 

a) the new value of the production status; 

b) the FOP alert if the sequence-controlled service is terminated; 

c) a list of identifiers of all packets that were or will be discarded because of the 
production status change; 

NOTE – If no packets need to be discarded because of production status change, the 
list shall not be supplied. 

d) the available buffer size. 

3.1.4.8.4 The method ProductionStatusChange() shall: 

a) set the parameter production-status to the value supplied by the argument; 

b) if the value of the parameter packet-identification-last-processed is 
contained in the list of discarded packets supplied by the application: 

1) if the new production status is ‘interrupted’ or ‘halted’, set the parameter 
packet-status to ‘interrupted’; 

2) if the new production status is ‘operational BD’ or ‘operational AD suspended’, 
set the parameter packet-status to ‘unsupported transmission mode’; 

NOTE – In all other cases, no packets shall be affected and the list of discarded 
packets shall not be present. 

c) update the parameter packet-buffer-available according to the argument passed to the 
method; 

d) if requested by the application, and if the state of the service instance is ‘ready’ or 
‘active’: 

1) if the production status changed to ‘halted’, send the notification ‘production 
halted’; 

CCSDS 916.3-M-1 Page 3-13 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2) if the production status changed from ‘configured’ or ‘operational’ to 
‘interrupted’ and the list of discarded packets is present and not empty, send the 
notification ‘production interrupted’; 

3) if the production status changed from ‘operational AD and BD’ to ‘interrupted’ 
and the list of discarded packets is not present or empty, send the notification 
‘transmission mode capability change’; 

4) if the production status changed from ‘configured’ or ‘interrupted’ to 
‘operational’, and the production status last reported to the user is not 
‘operational’, send the notification ‘production operational’; 

5) if the production status changed from ‘operational AD and BD’ to ‘operational 
BD’ or ‘operational AD suspended’ or if the production status changed from 
‘operational BD’ or ‘operational AD suspended’ to ‘operational AD and BD’, 
send the notification ‘transmission mode capability change’; 

6) if the production status changed from ‘operational AD and BD’ to ‘operational 
BD’ or ‘operational AD suspended’ and the list of discarded packets is present 
and not empty, send the notification ‘packet transmission mode mismatch’. 

NOTE – If this condition is true, the notification ‘packet transmission mode 
mismatch’ shall be sent in addition to and after the notification 
‘transmission mode capability change’. 

3.1.4.8.5 The method ProductionStatusChange() shall perform the following 
consistency checks.  If any of the checks fail, the method shall return an error code and 
perform no actions: 

a) when the production status changes from ‘configured’ or ‘interrupted’ to 
‘operational’, the sub-state must be ‘BD’; 

b) when the production status changes from operational to ‘interrupted’ or ‘halted’ and 
the status of the packet last processed is ‘processing started’, the list of affected 
packets must be supplied and the packet last processed must be a member of this list; 

c) when the list of affected packets is supplied and is not empty, the following 
conditions must hold: 

1) the production status must have changed; 

2) the new production status must not be ‘operational AD and BD’ or ‘configured’; 

3) the old production status must have been ‘operational’; 

4) the production status must not have changed from ‘operational AD suspended’ to 
‘operational BD’. 

3.1.4.8.6 If the checks identified in 3.1.4.8.5 succeed but the production status has not 
changed, the method shall perform no actions and shall inform the caller accordingly. 

CCSDS 916.3-M-1 Page 3-14 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.4.9 Reported Production Status 

Whenever the service element sends one of the notifications ‘production operational’, 
‘production interrupted’, or ‘production halted’, it shall memorize the reported status. 

NOTE – This ‘reported production status’ shall be used to prevent that the notification 
‘production operational’ is sent to a user that was not informed of a change to a non 
operational status either because the service instance was not bound when the 
change occurred or because no packets were affected by the production status 
‘interrupted’. 

3.1.4.10 Execution of the Directive ‘Abort VC’ 

3.1.4.10.1 The application shall call the method VCAborted() whenever the directive 
‘abort VC’ was executed on the virtual channel passing a list of identifiers of all packets that 
were discarded. 

3.1.4.10.2 When calling the method VCAborted() the application shall provide the 
following information using the method arguments: 

a) a list of identifiers of all packets that were or will be discarded because of processing 
of the directive; 

NOTE – If no packets need to be discarded because of production status change, the 
list shall not be supplied. 

b) the available buffer size. 

3.1.4.10.3 The method VCAborted() shall: 

a) set the parameter production-status to ‘operational BD’; 

b) if the value of the parameter packet-identification-last-processed is 
contained in the list of discarded packets supplied by the application and the 
transmission mode of that packet is ‘sequence controlled’, set the parameter packet 
status to ‘interrupted’; 

c) update the parameter packet-buffer-available according to the argument 
passed to the method; 

d) if requested by the application, send the notification ‘VC aborted’ if the state of the 
service instance is ‘ready’ or ‘active’. 

NOTE – If no packets were buffered or were being processed when the directive was 
executed, the list of discarded packets shall not be supplied. 

CCSDS 916.3-M-1 Page 3-15 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.4.11 No Invoke Directive Capability 

3.1.4.11.1 The application shall call the method NoDirectiveCapability() when the 
service instance for which directive invocation is enabled is no longer bound because of an 
UNBIND operation, a PEER-ABORT operation or a protocol abort event. 

3.1.4.11.2 If directive invocation is not enabled for the service instance the method 
NoDirectiveCapability() shall: 

a) set the parameter directive-invocation-online to ‘no’; 

b) if requested by the application and if the state of the service instance is ‘ready’ or 
‘active’ transmit the notification ‘no invoke directive capability on this VC’. 

3.1.4.11.3 If directive invocation is enabled for the service instance, the method shall 
perform no actions and shall inform the caller accordingly. 

3.1.4.12 Invoke Directive Capability Established 

3.1.4.12.1 The application shall call the method DirectiveCapabilityOnline() 
when a service instance for which directive invocation is enabled has bound to the provider. 

3.1.4.12.2 If directive invocation is not enabled for the service instance, the method 
DirectiveCapabilityOnline() shall: 

a) set the parameter directive-invocation-online to ‘yes’; 

b) if requested by the application and if the state of the service instance is ‘ready’ or 
‘active’ transmit the notification ‘invoke directive capability on this VC established’. 

3.1.4.12.3 If directive invocation is enabled for the service instance, the method shall 
perform no actions and shall inform the caller accordingly. 

3.1.4.13 Directive Execution Completed 

3.1.4.13.1 The application should call the method DirectiveCompleted() when 
execution of a directive invoked by the operation FSP-INVOKE-DIRECTIVE completes. 

3.1.4.13.2 When calling the method DirectiveCompleted() the application shall 
provide the following information using the method arguments: 

a) the directive identification copied from the FSP-INVOKE-DIRECTIVE invocation; 

b) the result of execution, indicating whether execution succeeded (‘positive result’) or 
failed (‘negative result’); 

c) in case of a negative result, the FOP alert providing the reason for the failure. 

CCSDS 916.3-M-1 Page 3-16 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.1.4.13.3 If requested by the caller, the method DirectiveCompleted() shall: 

a) send the notification ‘positive confirm result to directive’ if the result is positive; 

b) send the notification ‘negative confirm result to directive’ if the result is negative. 

3.1.4.14 Event Processing Completed 

3.1.4.14.1 The application should call the method EventProcCompleted() when 
processing of an event requested by an accepted FSP-THROW-EVENT operation completes. 

3.1.4.14.2 When calling the method EventProcCompleted() the application shall 
provide the following information using the method arguments: 

a) the event invocation identification as copied from the FSP-THROW-EVENT 
invocation; 

b) the result of execution, indicating whether: 

1) the action list associated with the event was completely executed; 

2) at least one of the actions in the associated action list failed;  or 

3) the condition associated with the event evaluated to false. 

3.1.4.14.3 If requested by the caller, the method EventProcCompleted() shall: 

a) send the notification ‘action list completed’ if the action list associated with the event 
was completely executed; 

b) send the notification ‘action list not completed’ if at least one of the actions in the 
associated action list failed; 

c) send the notification ‘event action evaluated to false’ if the condition associated with 
the event evaluated to false. 

3.1.4.15 Consistency Checks 

The service element shall apply the following rules for checking of consistency: 

a) The methods PacketStarted(), PacketRadiated(), 
PacketAcknowledged(), and BufferEmpty() shall perform no checks. 

NOTE – These methods must be called frequently during nominal operation.  Because 
of performance considerations, the service element shall fully rely on the 
application to ensure that the methods are used correctly.  Detailed 
preconditions are defined in A4.3. 

CCSDS 916.3-M-1 Page 3-17 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

b) The methods DirectiveCompleted() and EventProcCompleted() shall 
perform no checks. 

NOTE – Checking of correctness of these method invocations requires information not 
available to the service element.  Therefore, the service element must fully 
rely on the application to ensure that the methods are used correctly. 

c) For other methods, the service element shall verify that the arguments are consistent 
and that the method call is consistent with the values of the status parameters before 
the method was invoked.  If the check fails, the service element shall proceed as 
follows: 

1) if applying the update results in a consistent set of status parameters, the service 
element shall perform the update and shall send the notification (if requested) but 
shall return an error code to the application as a warning; 

2) if an update would result in inconsistent status parameters, the service element 
shall not perform the update, shall not send any notifications, but shall return an 
appropriate error code. 

NOTE – Further details concerning the checks performed and return codes passed to 
the caller are defined in A4.3. 

3.1.5 PROCESSING OF FSP PROTOCOL DATA UNITS 

NOTES 

1 The service element processes FSP PDUs according to the general specifications in 
reference [5].  This subsection only addresses additional checks and processing steps 
defined for the FSP service.  FSP-specific checks defined in reference [3] but not 
listed in this subsection must be performed by the application.  Subsection 2.2.9 
provides a discussion of the borderline between the application and the service 
element. 

2 3.1.4 defines processing requirements for update of status information and generation 
of notifications.  Annex subsection A3 defines the checks that operation objects 
perform when the methods VerifyInvocationArguments() and 
VerifyReturnArguments() are called.  Reference [5] contains specifications 
defining how the service element handles error codes returned by these methods. 

3.1.5.1 FSP TRANSFER DATA 

3.1.5.1.1 When receiving an FSP–TRANSFER–DATA invocation, the service element 
shall perform the following checks in addition to the checks defined in reference [5] for all 
PDUs.  These checks shall be performed in the specified sequence: 

CCSDS 916.3-M-1 Page 3-18 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

a) If the ‘earliest production time’ and the ‘latest production time’ are both specified, the 
‘earliest production time’ must not be later than the ‘latest production time’. 

b) The time window defined by the ‘earliest production time’ and the ‘latest production 
time’ must overlap with the provision period of the service instance. 

c) If the configuration parameter segment-header defines that segment headers are 
used, the value of the parameter ‘MAP identifier’ must be contained in the configured 
‘map list’.  If segment headers are not used, the value of the ‘MAP identifier’ must be 
‘none’. 

d) The value of the parameter transmission-mode must match the configured 
permitted transmission mode. 

e) If the transmission-mode is ‘expedited’, the ‘acknowledged notification’ must 
not be requested. 

f) The size of the packet contained in the PDU must not be larger than the value of the 
configuration parameter maximum-packet-length allows. 

3.1.5.1.2 If any of the checks defined in 3.1.5.1.1 fail, or a return PDU with a negative 
result must be generated because a check defined in reference [5] failed, the service element 
shall proceed as follows: 

a) if the service element can guarantee that all preceding FSP–TRANSFER–DATA 
invocations have already been processed by the application, or that the PDU 
processed by the service element is the first FSP–TRANSFER–DATA invocation 
following START, the service element may generate a FSP–TRANSFER–DATA 
return with a negative result and transmit that to the service user; 

NOTE – In that case, the service element shall use the status parameters ‘expected 
packet identification’ and packet-buffer-available to set the 
parameters of the FSP–TRANSFER–DATA return. 

b) if the conditions defined in 3.1.5.1.2 item a) are not met or cannot be verified, the 
service element shall set the result parameter to ‘negative’, set the appropriate 
diagnostic in the operation object, and pass the operation object to the application; 

c) in order to ensure that the result parameter of the operation object always has a valid 
reading, the service element shall set the result parameter to ‘positive’ if all checks 
performed by the service element succeeded. 

NOTES 

1 It is noted that this processing deviates from the standard way in which confirmed 
PDUs are handled by the service element.  The reasons for this specification are 
explained in 2.2.9.3. 

CCSDS 916.3-M-1 Page 3-19 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2 An implementation is not required to generate and transmit a FSP–TRANSFER–
DATA return also when it could verify that the conditions defined in 3.1.5.1.2 
item a) are met.  A service element can use one of the following approaches: 

– ensure that no FSP–TRANSFER–DATA invocations are queued between the 
service element and the application, and never pass an invocation for which a 
check has failed to the application; 

– always pass FSP–TRANSFER–DATA invocations to the application; or 

– decide on a case-by-case basis. 

3 Implementations should document the approach used.  Applications should 
always expect the service element to pass FSP–TRANSFER–DATA invocations 
with a negative result if substitutability of SLE API components shall be 
maintained. 

4 Processing expected from the application is defined in 3.3. 

3.1.5.2 FSP THROW EVENT 

3.1.5.2.1 If an FSP–THROW–EVENT return PDU with a negative result must be generated 
because a check defined in reference [5] failed, the service element shall proceed as defined 
by the following specifications. 

3.1.5.2.2 If the service element can guarantee that all preceding FSP–THROW–EVENT 
invocations have already been processed by the application or that the PDU processed by the 
service element is the first FSP–THROW–EVENT invocation following BIND, the service 
element may generate a FSP–THROW–EVENT return with a negative result and transmit 
that to the service user. 

NOTE – In that case, the service element shall use the status ‘expected event invocation 
identifier’ to set the parameter of the FSP–THROW–EVENT return. 

3.1.5.2.3 If the conditions defined in  3.1.5.2.2 are not met or cannot be verified the service 
element shall set the result parameter to ‘negative’, set the appropriate diagnostic in the 
operation object, and pass the operation object to the application. 

3.1.5.2.4 In order to ensure that the result parameter of the operation object always has a 
valid reading, the service element shall set the result parameter to ‘positive’ if all checks 
performed by the service element succeeded. 

NOTES 

1 It is noted that this processing deviates from the standard way in which confirmed 
PDUs are handled by the service element.  The reasons for this specification are 
explained in 2.2.9.3. 

CCSDS 916.3-M-1 Page 3-20 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2 A service element shall not be required to generate and transmit a FSP–THROW–
EVENT return also when it could verify that the conditions defined in  3.1.5.2.2 are 
met.  A service element can use one of the following approaches: 

– ensure that no FSP–THROW–EVENT invocations are queued between the 
service element and the application, and never pass an invocation for which a 
check has failed to the application; 

– always pass FSP–THROW–EVENT invocations to the application; or 

– decide on a case-by-case basis. 

3 Implementations should document the approach used.  Applications should always 
expect that the service element pass FSP–THROW–EVENT invocations with a 
negative result if substitutability of SLE API components shall be maintained. 

4 Processing expected from the application is defined in 3.3. 

3.1.5.3 FSP INVOKE DIRECTIVE 

3.1.5.3.1 When receiving an FSP–INVOKE-DIRECTIVE invocation, the service element 
shall verify that invocation of directives is enabled for the service instance. 

3.1.5.3.2 If invocation of directives is not enabled for the service instance, the service 
element shall not pass the invocation to the application but shall send a return with a negative 
result and the appropriate diagnostic. 

3.1.5.3.3 If the invocation of directives is enabled for the service instance, but a FSP-
INVOKE-DIRECTIVE return PDU with a negative result must be generated because a check 
defined in reference [5] failed, the service element shall proceed as follows: 

a) If the service element can guarantee that all preceding FSP–INVOKE-DIRECTIVE 
invocations have already been processed by the application, or that the PDU 
processed by the service element is the first FSP–INVOKE-DIRECTIVE invocation 
following BIND, the service element may generate a FSP–INVOKE-DIRECTIVE 
return with a negative result and transmit that to the service user. 

b) In that case, the service element uses the status parameter expected directive 
invocation identifier to set the parameter of the FSP–INVOKE-DIRECTIVE return. 

c) If the conditions defined in  3.1.5.3.3 a) are not met or cannot be verified, the service 
element shall set the result parameter to ‘negative’, set the appropriate diagnostic in 
the operation object, and pass the operation object to the application. 

d) In order to ensure that the result parameter of the operation object always has a valid 
reading, the service element shall set the result parameter to ‘positive’ if all checks 
performed by the service element succeeded. 

CCSDS 916.3-M-1 Page 3-21 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

NOTES 

1 It is noted that this processing deviates from the standard way in which confirmed 
PDUs are handled by the service element.  The reasons for this specification are 
explained in 2.2.9.3. 

2 An implementation is not required to generate and transmit a FSP–INVOKE-
DIRECTIVE return also when it could verify that the conditions defined in 
 3.1.5.3.3 item a) are met.  A service element can use one of the following 
approaches: 

– ensure that no FSP–INVOKE-DIRECTIVE invocations are queued between 
the service element and the application, and never pass an invocation for 
which a check has failed to the application; 

– always pass FSP–INVOKE-DIRECTIVE invocations to the application; or 

– decide on a case-by-case basis. 

3 Implementations should document the approach used.  Applications should 
always expect the service element to pass FSP–INVOKE-DIRECTIVE 
invocations with a negative result if substitutability of SLE API components shall 
be maintained. 

4 Processing expected from the application is defined in 3.3. 

3.1.6 SERVICE INSTANCE SPECIFIC OPERATION FACTORY 

For FSP service instances, the interface ISLE_SIOpFactory specified in reference [5] 
shall support creation and configuration of operation objects for all operations specified in 
3.2 with exception of the object for the operation IFSP–STATUS–REPORT. 

NOTE – The initial values of parameters that shall be set for FSP-specific operation 
objects are defined in annex  A.  The operation IFSP–STATUS–REPORT shall be 
handled autonomously by the provider-side service element.  There is no need for 
the application to create this object. 

3.2 SLE OPERATIONS 

3.2.1 The component ‘SLE Operations’ shall provide operation objects for the following 
FSP operations in addition to those specified in reference [5]: 

a) FSP–START; 

b) FSP–TRANSFER–DATA; 

c) FSP–ASYNC–NOTIFY; 

CCSDS 916.3-M-1 Page 3-22 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

d) FSP–STATUS–REPORT; 

e) FSP–GET–PARAMETER; 

f) FSP–THROW–EVENT; 

g) FSP-INVOKE-DIRECTIVE. 

3.2.2 The operation factory shall create the operation objects specified in 3.2.1 when the 
requested service type is FSP. 

3.2.3 The operation factory shall additionally create the following operation objects 
specified in reference [5] when the requested service type is FSP: 

a) SLE–BIND; 

b) SLE–UNBIND; 

c) SLE–PEER–ABORT; 

d) SLE–STOP; 

e) SLE–SCHEDULE–STATUS–REPORT. 

3.3 SLE APPLICATION 

NOTE – This subsection summarizes specific obligations of a FSP provider application 
using the SLE API. 

3.3.1 CONFIGURATION AND UPDATE OF STATUS INFORMATION 

3.3.1.1 Following creation of a service instance, and setting of the configuration parameters 
defined in reference [5], the application shall set the configuration parameters defined in 
3.1.2 via the interface IFSP_SIAdmin. 

3.3.1.2 Following creation of a service instance, the application shall initialize the FOP 
parameters defined in 3.1.3 via the interface IFSP_FOPMonitor and subsequently update 
these parameters whenever a change occurs. 

3.3.1.3 The application shall inform the service element of all events defined in 3.1.4.2 by 
invocation of the appropriate methods of the interface IFSP_SIUpdate. 

CCSDS 916.3-M-1 Page 3-23 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.3.2 PROCESSING OF FSP TRANSFER DATA 

When receiving a FSP–TRANSFER–DATA invocation via the interface 
ISLE_ServiceInform, the application shall check the result parameter of the operation 
object and shall perform the following steps: 

a) if the result is negative, the application shall set the expected packet identification 
and the available buffer size and then passes the operation back to the service element 
using the method InitiateOpReturn() of the interface 
ISLE_ServiceInitiate; 

b) if the result is positive, the application shall perform the checks not specified in 3.1.5 
and reference [5]. 

1) If any of these checks fail, the application shall set the appropriate diagnostic, the 
expected packet identification, and the available buffer size and then pass the 
operation object to the service element using the method 
InitiateOpReturn() in the interface ISLE_ServiceInitiate. 

2) If all checks succeed, the application stores the packet to the packet buffer, the 
application shall set a positive result, the expected packet identification, and the 
available buffer size and then pass the operation object back to the service 
element using the method InitiateOpReturn() in the interface 
ISLE_ServiceInitiate. 

3.3.3 PROCESSING OF FSP THROW EVENT 

When receiving a FSP–THROW–EVENT invocation via the interface 
ISLE_ServiceInform, the application shall check the result parameter of the operation 
object and perform the following steps: 

a) if the result is negative, the application shall set the expected event invocation and 
pass the operation back to the service element using the method 
InitiateOpReturn() in the interface ISLE_ServiceInitiate; 

b) if the result is positive, the application performs the checks not specified in 3.1.5 and 
reference [5]: 

1) if any of these checks fail, the application shall set the appropriate diagnostic and 
the expected event invocation identifier and then pass the operation object to the 
service element using the method InitiateOpReturn() in the interface 
ISLE_ServiceInitiate; 

2) if all checks succeed, the application shall perform the required operation, set a 
positive result, and the expected event invocation identifier and then pass the 
operation object back to the service element using the method 
InitiateOpReturn() in the interface ISLE_ServiceInitiate. 

CCSDS 916.3-M-1 Page 3-24 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

3.3.4 PROCESSING OF FSP INVOKE DIRECTIVE 

When receiving a FSP–INVOKE-DIRECTIVE invocation via the interface 
ISLE_ServiceInform, the application shall check the result parameter of the operation 
object and perform the following steps: 

a) if the result is negative, the application shall set the expected directive invocation 
identifier and pass the operation back to the service element using the method 
InitiateOpReturn() in the interface ISLE_ServiceInitiate; 

b) if the result is positive, the application shall perform the checks required: 

1) if any of these checks fail, the application shall set the appropriate diagnostic and 
the expected directive invocation identifier and then pass the operation object to 
the service element using the method InitiateOpReturn() in the interface 
ISLE_ServiceInitiate; 

2) if all checks succeed, the application shall perform the required operation, set a 
positive result, and the expected directive invocation identifier, and then pass the 
operation object back to the service element using the method 
InitiateOpReturn() in the interface ISLE_ServiceInitiate. 

3.4 SEQUENCE OF DIAGNOSTIC CODES 

3.4.1 GENERAL 

3.4.1.1 Reference [3] requires provider applications that do not perform checks in the 
sequence of the diagnostic codes defined in the specification to document the sequence in 
which checks are actually performed. 

3.4.1.2 The specification in 3.1.5 does not preserve the sequence of the diagnostic codes 
defined in reference [3] for the operation FSP–TRANSFER–DATA.  This subsection defines 
the actual sequence of checks performed by the API Service Element.  For the checks that 
remain to be performed by the provider application, the sequence defined in reference [3] is 
maintained.  Applications applying a different sequence must provide a modified 
documentation. 

3.4.2 SEQUENCE OF FSP-TRANSFER-DATA DIAGNOSTIC CODES 

3.4.2.1 Codes Set by the API Service Element 

a) ‘duplicate invoke id’; 

b) ‘inconsistent time range’; 

c) ‘invalid time’; 

d) ‘invalid MAP’; 

CCSDS 916.3-M-1 Page 3-25 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page 3-26 October 2008 

e) ‘invalid notification request’;  and 

f) ‘packet too long’. 

3.4.2.2 Codes Set by the Application 

a) ‘unable to process’; 

b) ‘unable to store’; 

c) ‘out of sequence’; 

d) ‘duplicate packet identification’; 

e) ‘invalid time’; 

f) ‘conflicting production time intervals’; 

g) ‘late sldu’; 

h) ‘invalid delay time’; 

i) ‘invalid transmission mode’; 

j) ‘unsupported packet version’; 

k) ‘incorrect packet type’; 

l) ‘invalid packet apid’;  and 

m) ‘other reason’. 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

ANNEX A 
 

FSP SPECIFIC INTERFACES 
 

(Normative) 

A1 INTRODUCTION 

This annex specifies FSP specific 

a) data types; 

b) interfaces for operation objects;  and 

c) interfaces for service instances. 

The specification of the interfaces follows the design patterns, conventions and the additional 
conventions described in reference [4]. 

The presentation uses the notation and syntax of the C++ programming language as specified 
in reference [5]. 

CCSDS 916.3-M-1 Page A-1 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A2 FSP TYPE DEFINITIONS 

File FSP_Types.h 

The following types have been derived from the ASN.1 module CCSDS-SLE-TRANSFER-
FSP-STRUCTURES in reference [3].  The source ASN.1 type is indicated in brackets.  For 
all enumeration types a special value ‘invalid’ is defined, which is returned if the associated 
value in the operation object has not yet been set, or is not applicable in case of a choice.   

Absolute Priority [AbsolutePriority] 
typedef struct FSP_AbsolutePriority 
{ 
  unsigned int mapOrVc;        /* 0 to 63 */ 
  unsigned int priority;       /* 1 (highest) to 64 (lowest) */ 
} FSP_AbsolutePriority; 

An entry in the priority list used for multiplexing of MAPs and VCs.   

Blocking Usage [BlockingUsage] 
typedef enum FSP_BlockingUsage 
{ 
  fspAU_permitted        =  0, 
  fspAU_notPermitted     =  1, 
  fspAU_invalid          = -1 
} FSP_BlockingUsage; 

Application Identifier (APID) 
typedef unsigned long FSP_ApId;       /* 0 to 2047 */ 

Packet Buffer Size [BufferSize] 
typedef unsigned long FSP_BufferSize; 

Size of the packet buffer or the remaining free space in the buffer measured in octets. 

Packet Identification [PacketIdentification] 
typedef unsigned long FSP_PacketId; 

Directive Identification 
typedef unsigned long FSP_DirectiveId; 

Identifier of a Thrown Event [EventInvocationId] 
typedef unsigned long FSP_EventInvocationId; 

CCSDS 916.3-M-1 Page A-2 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Directive [FspInvokeDirectiveInvocation] 
typedef enum FSP_Directive 
{ 
  fspDV_initiateADwithoutCLCW        =  0, 
  fspDV_initiateADwithCLCW           =  1, 
  fspDV_initiateADwithUnlock         =  2, 
  fspDV_initiateADwithSetVR          =  3, 
  fspDV_terminateAD                  =  4, 
  fspDV_resumeAD                     =  5, 
  fspDV_setVS                        =  6, 
  fspDV_setFopSlidingWindow          =  7, 
  fspDV_setT1Initial                 =  8, 
  fspDV_setTransmissionLimit         =  9, 
  fspDV_setTimeoutType               = 10, 
  fspDV_abortVC                      = 11, 
  fspDV_modifyMapMuxControl          = 12, 
  fspDV_invalid                      = -1 
} FSP_Directive; 

MAP or VC Identification [MapOrVcId] 
typedef unsigned int FSP_MapOrVcId;    /* 0 to 63 */ 

MAP Identification [MapId] 
typedef FSP_MapOrVcId FSP_MapId; 

VC Identification 
typedef FSP_MapOrVcId FSP_VcId; 

Multiplexing Scheme [MuxScheme] 
typedef enum FSP_MuxScheme 
{ 
  fspMS_fifo              =  0, 
  fspMS_absolutePriority  =  1, 
  fspMS_pollingVector     =  2, 
  fspMS_invalid           = -1 
} FSP_MuxScheme; 

Timeout Type [FspGetParameter] 
typedef enum FSP_TimeoutType 
{ 
  fspTT_generateAlert     =  0, 
  fspTT_suspendAD         =  1, 
  fspTT_invalid           = -1 
} FSP_TimeoutType; 

CCSDS 916.3-M-1 Page A-3 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Timeout Type [FspInvokeDirectiveParameter] 
typedef enum FSP_DirectiveTimeoutType 
{ 
  fspDTT_terminateAD       =  0, 
  fspDTT_suspendAD         =  1, 
  fspDTT_invalid           = -1 
} FSP_DirectiveTimeoutType; 

The Timeout Type used in the Invoke Directive invocation. 

Transmission Mode [TransmissionMode] 
typedef enum FSP_TransmissionMode 
{ 
  fspTM_sequenceControlled        =  0,   /* AD mode    */ 
  fspTM_expedited                 =  1,   /* BD mode    */ 
  fspTM_sequenceControlledUnblock =  2,   /* unblock AD */ 
  fspTM_invalid                   = -1 
} FSP_TransmissionMode; 

Transmission Mode [PermittedTransmissionMode] 
typedef enum FSP_PermittedTransmissionMode 
{ 
  fspPTM_sequenceControlled        =  0, 
  fspPTM_expedited                 =  1, 
  fspPTM_any                       =  2, 
  fspPTM_invalid                   = -1 
} FSP_PermittedTransmissionMode; 

FSP Start Diagnostic [DiagnosticFspStart] 
typedef enum FSP_StartDiagnostic 
{ 
  fspSTD_outOfService          =   0, 
  fspSTD_unableToComply        =   1, 
  fspSTD_productionTimeExpired =   2, 
  fspSTD_invalid               =  -1 
} FSP_StartDiagnostic; 

CCSDS 916.3-M-1 Page A-4 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP Transfer Data Diagnostic [DiagnosticFspTransferData] 
typedef enum FSP_TransferDataDiagnostic 
{ 
  fspXFD_unableToProcess                     =   0, 
  fspXFD_unableToStore                       =   1, 
  fspXFD_packetIdOutOfSequence               =   2, 
  fspXFD_duplicatePacketIdentification       =   3, 
  fspXFD_inconsistentTimeRange               =   4, 
  fspXFD_invalidTime                         =   5, 
  fspXFD_conflictingProductionTimeIntervals  =   6, 
  fspXFD_lateSldu                            =   7, 
  fspXFD_invalidDelayTime                    =   8, 
  fspXFD_invalidTransmissionMode             =   9, 
  fspXFD_invalidMap                          =  10, 
  fspXFD_invalidNotificationRequest          =  11, 
  fspXFD_packetTooLong                       =  12, 
  fspXFD_unsupportedPacketVersion            =  13, 
  fspXFD_incorrectPacketType                 =  14, 
  fspXFD_invalidPacketApid                   =  15, 
  fspXFD_invalid                              = -1 
} FSP_TransferDataDiagnostic; 

FSP Get Parameter Diagnostic [DiagnosticFspGetParameter] 
typedef enum FSP_GetParameterDiagnostic 
{ 
  fspGP_unknownParameter =   0, 
  fspGP_invalid         =   -1 
} FSP_GetParameterDiagnostic; 

FSP Invoke Directive Diagnostic [DiagnosticFspInvokeDirective] 
typedef enum FSP_InvokeDirectiveDiagnostic 
{ 
  fspID_directiveInvocationNotAllowed        =   0, 
  fspID_directiveIdentificationOutOfSequence =   1, 
  fspID_directiveError                       =   2, 
  fspID_invalid                              =  -1 
} FSP_InvokeDirectiveDiagnostic; 

FSP Throw Event Diagnostic [DiagnosticFspThrowEvent] 
typedef enum FSP_ThrowEventDiagnostic 
{ 
  fspTED_operationNotSupported      =   0, 
  fspTED_outOfSequence              =   1, 
  fspTED_noSuchEvent                =   2, 
  fspTED_invalid                    =  -1 
} FSP_ThrowEventDiagnostic; 

CCSDS 916.3-M-1 Page A-5 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP Service Parameters [FspParameterName] 
typedef enum FSP_ParameterName 
{ 
  fspPN_blockingTimeoutPeriod          =   0, 
  fspPN_blockingUsage                  =   1, 
  fspPN_apidList                       =   2, 
  fspPN_deliveryMode                   =   6, 
  fspPN_directiveInvocationEnabled     =   7, 
  fspPN_expectedDirectiveId            =   8, 
  fspPN_expectedEventInvocationId      =   9, 
  fspPN_expectedSlduIdentification     =  10, 
  fspPN_fopSlidingWindow               =  11, 
  fspPN_fopState                       =  12, 
  fspPN_mapList                        =  16, 
  fspPN_mapMuxControl                  =  17, 
  fspPN_mapMuxScheme                   =  18, 
  fspPN_maximumFrameLength             =  19, 
  fspPN_maximumPacketLength            =  20, 
  fspPN_reportingCycle                 =  26, 
  fspPN_returnTimeoutPeriod            =  29, 
  fspPN_segmentHeader                  =  32, 
  fspPN_timeoutType                    =  35, 
  fspPN_timerInitial                   =  36, 
  fspPN_transmissionLimit              =  37, 
  fspPN_transmitterFrameSequenceNumber =  38, 
  fspPN_vcMuxControl                   =  39, 
  fspPN_vcMuxScheme                    =  40, 
  fspPN_virtualChannel                 =  41, 
  fspPN_permittedTransmissionMode      = 107, 
  fspPN_directiveInvocationOnline      = 108, 
  fspPN_invalid                        =  -1 
} FSP_ParameterName; 

The parameter name values are taken from the type ParameterName in CCSDS-SLE-
TRANSFER-SERVICE-COMMON-TYPES. 

FOP Alert [FopAlert] 
typedef enum FSP_FopAlert 
{ 
  fspFA_noAlert                    =  0, 
  fspFA_limit                      =  1, 
  fspFA_lockOutDetected            =  2, 
  fspFA_synch                      =  3, 
  fspFA_invalidNR                  =  4, 
  fspFA_Clcw                       =  5, 
  fspFA_lowerLayerOutOfSync        =  6, 
  fspFA_terminateAD                =  7, 
  fspFA_invalid                    = -1 
} FSP_FopAlert; 

CCSDS 916.3-M-1 Page A-6 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Packet Status [PacketStatus] 
typedef enum FSP_PacketStatus 
{ 
  fspST_acknowledged                 = sleFDS_acknowledged, 
  fspST_radiated                     = sleFDS_radiated, 
  fspST_productionStarted            = sleFDS_productionStarted, 
  fspST_productionNotStarted         = sleFDS_productionNotStarted, 
  fspST_expired                      = sleFDS_expired, 
  fspST_unsupportedTransmissionMode  = sleFDS_unsupportedTransmissionMode, 
  fspST_interrupted                  = sleFDS_interrupted, 
  fspST_invalid                      = -1 
} FSP_PacketStatus; 

Describes the state of the last processed packet.  It is defined as a subset of the type 
SLE_ForwardDuStatus specified in reference [3].   

Production Status [ProductionStatus] 
typedef enum FSP_ProductionStatus 
{ 
  fspPS_configured              =  0, 
  fspPS_operationalBd           =  1, 
  fspPS_operationalAdAndBd      =  2, 
  fspPS_operationalAdSuspended  =  3, 
  fspPS_interrupted             =  4, 
  fspPS_halted                  =  5, 
  fspPS_invalid                 = -1 
} FSP_ProductionStatus; 

The status of the FSP production engine 

FOP State [FspGetParameter] 
typedef enum FSP_FopState 
{ 
  fspFS_active                      =  0, 
  fspFS_retransmitWithoutWait       =  1, 
  fspFS_retransmitWithWait          =  2, 
  fspFS_initialisingWithoutBCFrame  =  3, 
  fspFS_initialisingWithBCFrame     =  4, 
  fspFS_initial                     =  5, 
  fspFS_invalid                     = -1 
} FSP_FopState; 

FSP Event Processing Result 
typedef enum FSP_EventResult 
{ 
  fspER_completed        =  0, /* action list completed */ 
  fspER_notCompleted     =  1, /* action list not completed */ 
  fspER_conditionFalse   =  2  /* event condition evaluated to false */ 
} FSP_EventResult; 

The result of processing a thrown event. 

CCSDS 916.3-M-1 Page A-7 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Notification Type [FspNotification] 
typedef enum FSP_NotificationType 
{ 
  fspNT_packetProcessingStarted              =  0, 
  fspNT_packetRadiated                       =  1, 
  fspNT_packetAcknowledged                   =  2, 
  fspNT_slduExpired                          =  3, 
  fspNT_packetTransmissionModeMismatch       =  4, 
  fspNT_transmissionModeCapabilityChange     =  5, 
  fspNT_bufferEmpty                          =  6, 
  fspNT_noInvokeDirectiveCapabilityOnThisVc  =  7, 
  fspNT_positiveConfirmResponseToDirective   =  8, 
  fspNT_negativeConfirmResponseToDirective   =  9, 
  fspNT_vcAborted                            = 10, 
  fspNT_productionInterrupted                = 11, 
  fspNT_productionHalted                     = 12, 
  fspNT_productionOperational                = 13, 
  fspNT_actionListCompleted                  = 14, 
  fspNT_actionListNotCompleted               = 15, 
  fspNT_eventConditionEvFalse                = 16, 
  fspNT_invokeDirectiveCapabilityOnThisVC    = 17, 
  fspNT_invalid                              = -1 
} FSP_NotificationType; 

FSP Failure 
typedef enum FSP_Failure 
{ 
  fspF_expired             =  0, 
  fspF_interrupted         =  1,  /* production interrupted */ 
  fspF_modeMismatch        =  2   /* transmission mode mismatch */ 
} FSP_Failure; 

CCSDS 916.3-M-1 Page A-8 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3 FSP OPERATION OBJECTS 

A3.1 FSP START OPERATION 

Name IFSP_Start 
GUID {1D0CBEE0-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation 
File IFSP_Start.H 

The interface provides access to the parameters of the confirmed operation FSP START. 

Synopsis 
include <FSP_Types.h> 
#include <ISLE_ConfirmedOperation.H> 
interface ISLE_Time; 
 
#define IID_IFSP_Start_DEF { 0x1d0cbee0, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_Start : ISLE_ConfirmedOperation 
{ 
  virtual FSP_PacketId 
    Get_FirstPacketId() const = 0; 
  virtual const ISLE_Time* 
    Get_StartProductionTime() const = 0; 
  virtual const ISLE_Time* 
    Get_StopProductionTime() const = 0; 
  virtual FSP_StartDiagnostic 
    Get_StartDiagnostic() const = 0; 
  virtual void 
    Set_FirstPacketId( FSP_PacketId id ) = 0; 
  virtual void 
    Set_StartProductionTime( const ISLE_Time& startTime ) = 0; 
  virtual void 
    Put_StartProductionTime( ISLE_Time* pstartTime ) = 0; 
  virtual void 
    Set_StopProductionTime( const ISLE_Time& stopTime ) = 0; 
  virtual void 
    Put_StopProductionTime( ISLE_Time* pstopTime ) = 0; 
  virtual void 
    Set_StartDiagnostic( FSP_StartDiagnostic diag ) = 0; 
}; 

Methods 

FSP_PacketId Get_FirstPacketId() const; 

Returns the first packet identification that the provider shall expect. 

CCSDS 916.3-M-1 Page A-9 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

const ISLE_Time* Get_StartProductionTime() const; 

Returns a pointer to the production start time if that parameter has been set.  If the parameter 
has not been specified returns a NULL pointer. 

const ISLE_Time* Get_StopProductionTime() const; 

Returns a pointer to the production stop time if that parameter has been set.  If the parameter 
has not been specified returns a NULL pointer. 

FSP_StartDiagnostic Get_StartDiagnostic() const; 

Returns the diagnostic code. 

Precondition: the result is negative, and the diagnostic type is set to ‘specific’. 

void Set_FirstPacketId( FSP_PacketId id ); 

Sets the first packet identification the provider shall accept. 

void Set_StartProductionTime( const ISLE_Time& startTime ); 

Sets the production start time to a copy of the input argument. 

void Put_StartProductionTime( ISLE_Time* pstartTime ); 

Stores the input argument to the parameter production start time. 

void Set_StopProductionTime( const ISLE_Time& stopTime ); 

Sets the production stop time to a copy of the input argument. 

void Put_StopProductionTime( ISLE_Time* pstopTime ); 

Stores the input argument to the parameter production stop time. 

void Set_StartDiagnostic( FSP_StartDiagnostic diag ); 

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the 
diagnostic code passed by the argument. 

CCSDS 916.3-M-1 Page A-10 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Initial Values of Operation Parameters after Creation 

Parameter Created directly Created by Service Instance 

first packet Identification 0 0 

start production time NULL (not used) NULL (not used) 

stop production time NULL (not used) NULL (not used) 

START diagnostic ‘invalid’ ‘invalid’ 

Checking of Invocation Parameters 

No checks beyond those defined by inherited interfaces are performed. 

Checking of Return Parameters 

Parameter Required condition 

start production time must not be NULL; 

if the start and the stop time are used, must be earlier than stop time 

stop production time if the start and the stop time are used, must be later than stop time 

START diagnostic must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is 
‘specific’ 

Additional Return Codes for VerifyReturnArguments 

SLE_E_MISSINGARG specification that the start production time is missing 

CCSDS 916.3-M-1 Page A-11 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3.2 FSP TRANSFER DATA OPERATION 

Name IFSP_TransferData 
GUID {91DCEBA0-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation 
File IFSP_TransferData.H 

The interface provides access to the parameters of the confirmed operation 
FSP-TRANSFER-DATA. 

Synopsis 
#include <FSP_Types.h> 
#include <ISLE_ConfirmedOperation.H> 
interface ISLE_Time; 
 
#define IID_IFSP_TransferData_DEF { 0x91dceba0, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_TransferData : ISLE_ConfirmedOperation 
{ 
  virtual FSP_PacketId 
    Get_PacketId() const = 0; 
  virtual FSP_PacketId 
    Get_ExpectedPacketId() const = 0; 
  virtual const ISLE_Time* 
    Get_EarliestProdTime() const = 0; 
  virtual const ISLE_Time* 
    Get_LatestProdTime() const = 0; 
  virtual SLE_Duration 
    Get_DelayTime() const = 0; 
  virtual FSP_TransmissionMode 
    Get_TransmisionMode() const = 0; 
  virtual bool 
    Get_MapIdUsed() const = 0; 
  virtual FSP_MapId 
    Get_MapId() const = 0; 
  virtual SLE_YesNo 
    Get_Blocking() const = 0; 
  virtual SLE_SlduStatusNotification 
    Get_ProcessingStartedNotification() const = 0; 
  virtual SLE_SlduStatusNotification 
    Get_RadiatedNotification() const = 0; 
  virtual SLE_SlduStatusNotification 
    Get_AcknowledgedNotification() const = 0; 
  virtual const SLE_Octet* 
    Get_Data( size_t& length ) const = 0; 
  virtual SLE_Octet* 
    Remove_Data( size_t& length ) = 0; 
  virtual FSP_BufferSize 
    Get_PacketBufferAvailable() const = 0; 
  virtual FSP_TransferDataDiagnostic 
    Get_TransferDataDiagnostic() const = 0; 
  virtual void 
    Set_PacketId( FSP_PacketId id ) = 0; 
  virtual void 

CCSDS 916.3-M-1 Page A-12 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

    Set_ExpectedPacketId( FSP_PacketId id ) = 0; 
  virtual void 
    Set_EarliestProdTime( const ISLE_Time& earliestTime ) = 0; 
  virtual void 
    Put_EarliestProdTime( ISLE_Time* pearliestTime ) = 0; 
  virtual void 
    Set_LatestProdTime( const ISLE_Time& latestTime ) = 0; 
  virtual void 
    Put_LatestprodTime( ISLE_Time* platestTime ) = 0; 
  virtual void 
    Set_DelayTime( SLE_Duration delay ) = 0; 
  virtual void 
    Set_TransmisionMode( FSP_TransmissionMode mode ) = 0; 
  virtual void 
    Set_MapId( FSP_MapId id ) = 0; 
  virtual void 
    Set_Blocking( SLE_YesNo ) = 0; 
  virtual void 
    Set_ProcessingStartedNotification( SLE_SlduStatusNotification ntf)= 0; 
  virtual void 
    Set_RadiatedNotification( SLE_SlduStatusNotification ntf )= 0; 
  virtual void 
    Set_AcknowledgedNotification( SLE_SlduStatusNotification ntf ) = 0; 
  virtual void 
    Set_Data( size_t length, const SLE_Octet* pdata ) = 0; 
  virtual void 
    Put_Data( size_t length, SLE_Octet* pdata ) = 0; 
  virtual void 
    Set_PacketBufferAvailable( FSP_BufferSize bufAvail ) = 0; 
  virtual void 
    Set_TransferDataDiagnostic( FSP_TransferDataDiagnostic diagnostic)= 0; 
}; 

Methods 

FSP_PacketId Get_PacketId() const; 

Returns the packet identification. 

FSP_PacketId Get_ExpectedPacketId() const; 

Returns the next expected packet identification.  If the parameter has not been set returns 
zero. 

const ISLE_Time* Get_EarliestProdTime() const; 

Returns a pointer to the earliest production time, if the parameter has been specified.  If the 
parameter is not set, returns a NULL pointer. 

const ISLE_Time* Get_LatestProdTime() const; 

Returns a pointer to the latest production time, if the parameter has been specified.  If the 
parameter is not set, returns a NULL pointer. 

CCSDS 916.3-M-1 Page A-13 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

SLE_Duration Get_DelayTime() const; 

Returns the parameter delay time. 

FSP_TransmissionMode Get_TransmisionMode() const; 

Returns the transmission mode parameter. 

virtual bool Get_MapIdUsed() 

Returns TRUE if the MAP ID parameter is used and not set to ‘none’.  Otherwise returns 
FALSE. 

FSP_MapId Get_MapId() const; 

Returns the MAP identifier if set in the object. 

Precondition: Get_MapIdUsed() returns TRUE. 

SLE_YesNo Get_Blocking() const; 

Returns the specification whether packet blocking should be applied. 

SLE_SlduStatusNotification 
Get_ProcessingStartedNotification() const; 

Returns the specification whether a notification shall be sent when processing of the packet 
was started. 

SLE_SlduStatusNotification Get_RadiatedNotification() const; 

Returns the specification whether a notification shall be sent when the packet was radiated. 

SLE_SlduStatusNotification Get_AcknowledgedNotification() const; 

Returns the specification whether a notification shall be sent when the packet was received 
on board. 

const SLE_Octet* Get_Data( size_t& length ) const; 

Returns a pointer to the packet data in the object.  The data must neither be modified nor 
deleted by the caller. 

Arguments 

length the number of bytes in the packet 

CCSDS 916.3-M-1 Page A-14 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

SLE_Octet* Remove_Data( size_t& length ); 

Returns a pointer to the packet data and removes the data from the object.  The client is 
expected to delete the data when they are no longer needed. 

Arguments 

length the number of bytes in the packet 

FSP_BufferSize Get_PacketBufferAvailable() const; 

Returns the available packet buffer size in bytes if the argument has been set.  If the 
parameter has not been set returns zero. 

FSP_TransferDataDiagnostic Get_TransferDataDiagnostic() const; 

Returns the diagnostic code. 

Precondition: the result is negative, and the diagnostic type is set to ‘specific’. 

void Set_PacketId( FSP_PacketId id ); 

Sets the packet identification for the packet transferred. 

void Set_ExpectedPacketId( FSP_PacketId id ); 

Sets the next expected packet identification. 

void Set_EarliestProdTime( const ISLE_Time& earliestTime ); 

Sets the earliest production time to a copy of the input argument. 

void Put_EarliestProdTime( ISLE_Time* pearliestTime ); 

Stores the input argument to the parameter earliest production time. 

void Set_LatestProdTime( const ISLE_Time& latestTime ); 

Sets the latest production time to a copy of the input argument. 

void Put_LatestProdTime( ISLE_Time* platestTime ); 

Stores the input argument to the parameter latest production time. 

CCSDS 916.3-M-1 Page A-15 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_DelayTime( SLE_Duration delay ); 

Sets the parameter delay time. 

void Set_TransmisionMode( FSP_TransmissionMode mode ); 

Sets the parameter transmission mode to the value of the argument. 

void Set_MapId( FSP_MapId id ); 

Sets the parameter ‘MAP identifier’ to the value of the argument.  The argument must be in 
the range 0 to 63.  The method must not be invoked when segment headers are not used. 

void Set_Blocking( SLE_YesNo ); 

Sets the parameter ‘blocking’ to the value of the argument. 

void  
Set_ProcessingStartedNotification( SLE_SlduStatusNotification ntf ); 

Sets the parameter ‘processing started notification’ to the value of the argument. 

void Set_RadiatedNotification( SLE_SlduStatusNotification ntf ); 

Sets the parameter ‘radiated notification’ to the value of the argument. 

void Set_AcknowledgedNotification( SLE_SlduStatusNotification ntf ); 

Sets the parameter ‘acknowledged notification’ to the value of the argument. 

void Set_Data( size_t length, const SLE_Octet* pdata ); 

Copies length bytes from the address pdata to the internal packet data parameter. 

Arguments 

pdata pointer to the packet data 

length the number of bytes in the packet 

void Put_Data( size_t length, SLE_Octet* data ); 

Stores the packet data to the object.  The operation object will eventually delete the data 
buffer. 

CCSDS 916.3-M-1 Page A-16 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

pdata pointer to the packet data 

length the number of bytes in the packet 

void Set_PacketBufferAvailable( FSP_BufferSize bufAvail ); 

Sets the available packet buffer size in byte. 

void  
Set_TransferDataDiagnostic( FSP_TransferDataDiagnostic diagnostic ); 

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the 
diagnostic code passed by the argument. 

Initial Values of Operation Parameters after Creation 

Parameter Created directly Created by Service Instance 

packet identification 0 0 

expected packet 
identification 

0 0 

earliest production time NULL NULL 

latest production time NULL NULL 

delay time 0 0 

transmission mode ‘invalid’ ‘invalid’ 

MAP identifier (not used) (not used) 

blocking ‘invalid’ ‘invalid’ 

processing started 
notification 

‘invalid’ ‘invalid’ 

radiated notification ‘invalid’ ‘invalid’ 

acknowledged notification ‘invalid’ ‘invalid’ 

packet buffer available 0 0 

transfer buffer diagnostic ‘invalid’ ‘invalid’ 

CCSDS 916.3-M-1 Page A-17 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Checking of Invocation Parameters 

Parameter Required condition 

earliest production time if earliest and latest production times are set, must be earlier than 
latest radiation time 

latest production time if earliest and latest production times are set, must be later than 
earliest radiation time 

data must not be NULL 

transmission mode must not be ‘invalid’ 

MAP identifier if used must be a number between 0 and 63 (inclusive) 

blocking must not be ‘invalid’ 

processing started 
notification 

must not be ‘invalid’ 

radiated notification must not be ‘invalid’ 

acknowledged notification must not be ‘invalid’; if ‘transmission mode’ is ‘expedited’ must not be 
‘produce notification’ 

Additional Return Codes for VerifyInvocationArguments 

SLE_E_TIMERANGE specification of the earliest and latest production times is 
inconsistent 

Checking of Return Parameters 

Parameter Required condition 

expected packet 
identification 

If result is ‘positive’, must be packet identification + 1  

transfer buffer diagnostic must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is 
‘specific’ 

CCSDS 916.3-M-1 Page A-18 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3.3 FSP ASYNC NOTIFY OPERATION 

Name IFSP_AsyncNotify 
GUID {91DCEBA1-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation 
File IFSP_AsyncNotify.H 

The interface provides access to the parameters of the unconfirmed operation 
FSP-ASYNC-NOTIFY. 

Synopsis 
#include <FSP_Types.h> 
#include <ISLE_Operation.H> 
interface ISLE_Time; 
#define IID_IFSP_AsyncNotify_DEF { 0x91dceba1, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_AsyncNotify : ISLE_Operation 
{ 
  virtual FSP_NotificationType 
    Get_NotificationType() const = 0; 
  virtual FSP_DirectiveId 
    Get_DirectiveExecutedId() const = 0; 
  virtual FSP_EventInvocationId 
    Get_EventThrownId() const = 0; 
  virtual const FSP_PacketId* 
    Get_PacketIdentificationList( int& size ) const = 0; 
  virtual FSP_FopAlert 
    Get_FopAlert() const = 0; 
  virtual bool 
    Get_PacketsProcessed() const = 0; 
  virtual FSP_PacketId 
    Get_PacketLastProcessed() const = 0; 
  virtual const ISLE_Time* 
    Get_ProductionStartTime() const = 0; 
  virtual FSP_PacketStatus 
    Get_PacketStatus() const = 0; 
  virtual bool 
    Get_PacketsCompleted() const = 0; 
  virtual FSP_PacketId 
    Get_PacketLastOk() const = 0; 
  virtual const ISLE_Time* 
    Get_ProductionStopTime() const = 0; 
  virtual FSP_ProductionStatus 
    Get_ProductionStatus() const = 0; 
  virtual void 
    Set_NotificationType( FSP_NotificationType notifyType ) = 0; 
  virtual void 
    Set_DirectiveExecutedId( FSP_DirectiveId id ) = 0; 
  virtual void 
    Set_EventThrownId( FSP_EventInvocationId id ) = 0; 
  virtual void 
    Set_PacketIdentificationList( const FSP_PacketId* list, 
                                  int size ) = 0; 
  virtual void 

CCSDS 916.3-M-1 Page A-19 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

    Put_PacketIdentificationList( FSP_PacketId* list, int size ) = 0; 
  virtual void 
    Set_FopAlert( FSP_FopAlert alert) = 0; 
  virtual void 
    Set_PacketLastProcessed( FSP_PacketId id ) = 0; 
  virtual void 
    Set_ProductionStartTime( const ISLE_Time& startTime ) = 0; 
  virtual void 
    Put_ProductionStartTime( ISLE_Time* pstartTime ) = 0; 
  virtual void 
    Set_PacketStatus( FSP_PacketStatus status ) = 0; 
  virtual void 
    Set_PacketLastOk( FSP_PacketId id ) = 0; 
  virtual void 
    Set_ProductionStopTime( const ISLE_Time& stopTime ) = 0; 
  virtual void 
    Put_ProductionStopTime( ISLE_Time* pstopTime ) = 0; 
  virtual void 
    Set_ProductionStatus( FSP_ProductionStatus status ) = 0; 
}; 

Methods 

FSP_NotificationType Get_NotificationType() const; 

Returns the notification type. 

FSP_DirectiveId Get_DirectiveExecutedId() const; 

Returns the identification of the executed directive to which the notification refers. 

Precondition: notification type is one of ‘positive confirm response to directive’, or ‘negative 
confirm response to directive’. 

FSP_EventInvocationId Get_EventThrownId() const; 

Returns the identification of the thrown event to which the notification refers. 

Precondition: notification type is one of ‘action list completed’, ‘action list not completed’, 
‘event condition evaluate to false’. 

const FSP_PacketId* Get_PacketIdentificationList( int& size ) const; 

Returns the list of identifiers of affected packets.  If the parameter is present but the list is 
empty, or if the parameter is not present, returns a NULL pointer. 

Precondition: notification type is one of ‘packet processing started’, ‘packet radiated’, 
‘packet acknowledged’, ‘sldu expired’, ‘packet transmission mode mismatch’, ‘production 
interrupted’, ‘VC aborted’, or ‘production halted’. 

CCSDS 916.3-M-1 Page A-20 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

size number of packet identifiers in the list 

FSP_FopAlert Get_FopAlert() const; 

Returns the FOP Alert parameter. 

Precondition: notification type is ‘transmission mode capability change’ or ‘negative confirm 
response to directive’. 

bool Get_PacketsProcessed() const; 

Returns true if at least one packet has started processing, false otherwise. 

FSP_PacketId Get_PacketLastProcessed() const; 

Returns the identification of the last packet for which processing started. 

Precondition: Get_PacketsProcessed() returns true. 

const ISLE_Time* Get_ProductionStartTime() const; 

Returns a pointer to the production start time of the last packet processed if the parameter has 
been set.  Otherwise returns a NULL pointer. 

Precondition: Get_PacketsProcessed() returns true. 

FSP_Status Get_PacketStatus() const; 

Returns the status of the last packet processed. 

Precondition: Get_PacketsProcessed() returns true. 

bool Get_PacketsCompleted() const; 

Returns true if at least one packet has successfully completed processing (i.e.,  radiated for 
BD and acknowledged for AD), false otherwise. 

FSP_PacketId Get_PacketLastOk() const; 

Returns the identification of the last packet that successfully completed processing. 

Precondition: Get_PacketsCompleted() returns true. 

CCSDS 916.3-M-1 Page A-21 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

const ISLE_Time* Get_ProductionStopTime() const; 

Returns a pointer to the production stop time of the last packet that successfully completed 
processing if the parameter has been set.  Otherwise returns a NULL pointer. 

Precondition: Get_PacketsCompleted() returns true. 

FSP_ProductionStatus Get_ProductionStatus() const; 

Returns the current value of the production status. 

void Set_NotificationType( FSP_NotificationType notifyType ); 

Sets the notification type. 

void Set_DirectiveExecutedId( FSP_DirectiveId id ); 

Sets the identification of the executed directive to which the notification refers. 

void Set_EventThrownId( FSP_EventInvocationId id ); 

Sets the identification of the thrown event to which the notification refers. 

void  
Set_PacketIdentificationList( const FSP_PacketId* list, int size ); 

Copies the list of packet identifiers passed as argument to the parameter ‘packet 
identification list’.  If the list must be supplied for the notification but does not contain any 
entries, the size argument must be set to zero.  In this special case, a NULL pointer can be 
supplied. 

Arguments 

size number of packet identifiers in the list 

void Put_PacketIdentificationList( FSP_PacketId* list, int size ); 

Stores the list of packet identifiers passed as argument to the parameter ‘packet identification 
list’.  If the list must be supplied for the notification but does not contain any entries, the size 
argument must be set to zero.  In this special case, a NULL pointer can be supplied. 

Arguments 

size number of packet identifiers in the list 

CCSDS 916.3-M-1 Page A-22 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_FopAlert( FSP_FopAlert alert ); 

Sets the parameter FOP alert to the value passed as argument. 

void Set_PacketLastProcessed( FSP_PacketId id ) = 0; 

Sets the identification of the last packet processed and sets ‘packets processed’ to true. 

void Set_ProductionStartTime( const ISLE_Time& startTime ); 

Sets the production start time of the last processed packet to a copy of the input argument. 

void Put_ProductionStartTime( ISLE_Time* pstartTime ); 

Stores the input argument to the parameter production start time of the packet last processed. 

void Set_PacketStatus( FSP_Status status ); 

Sets the status of the last processed packet. 

void Set_PacketLastOk( FSP_PacketId id ); 

Sets the identification of the last packet that completed processing and sets ‘packets 
completed to true. 

void Set_ProductionStopTime( const ISLE_Time& stopTime ); 

Sets the radiation stop time of the last packet that completed processing to a copy of the input 
argument. 

void Put_ProductionStopTime( ISLE_Time* pstopTime ); 

Stores the input argument to the parameter radiation stop time of the packet last radiated. 

void Set_ProductionStatus( FSP_ProductionStatus status ); 

Sets the value of the parameter production status. 

CCSDS 916.3-M-1 Page A-23 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Initial Values of Operation Parameters after Creation 

Parameter Created directly Created by Service Instance 

notification type ‘invalid’ ‘invalid’ 

directive executed identification 0 0 

event thrown identification 0 0 

packet identification list NULL NULL 

FOP alert ‘invalid’ ‘invalid’ 

packets processed FALSE TRUE if the number of packets 
processed is > 0, FALSE otherwise 

packet identification last 
processed 

0 value stored for status reports 

production start time NULL (not used) value stored for status reports 

packet status ‘invalid’ value stored for status reports 

packets completed FALSE TRUE if the number of BD packets 
radiated is > 0 or the number of AD 
packets acknowledged > 0, FALSE 
otherwise 

packet identification last OK 0 value stored for status reports 

production stop time NULL (not used) value stored for status reports  

production status ‘invalid’ value stored for status reports  

CCSDS 916.3-M-1 Page A-24 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Checking of Invocation Parameters 

Parameter Required condition 

notification type Must not be ‘invalid’. 

packet identification list Must be present and have a single entry for the notification types 
‘packet processing started’, ‘packet radiated’, and ‘packet 
acknowledged’. 

Must be present with one or more entries for the notification types 
‘sldu expired’ and ‘production interrupted’. 

Must be present with any number of entries (including zero) for 
the notification types ‘packet transmission mode mismatch’, 
‘production interrupted’, ‘VC aborted’, or ‘production halted’. 

Must not be present for all other notifications. 

FOP alert Must not be ‘invalid’ for the notifications ‘transmission mode 
capability change’ or ‘negative confirm response to directive’.  
Must be ‘invalid’ for all other notifications. 

packets processed Must not be FALSE if the notification type is ‘packet processing 
started’, ‘packet radiated’, ‘packet acknowledged’, ‘sldu expired’, 
and ‘production interrupted’.  Must not be FALSE if ‘packets 
completed’ is TRUE. 

production start time Must not be NULL if  ‘packets processed’ is TRUE  

packet status Must not be ‘invalid’ if ‘packets processed’ is TRUE 

packets completed Must not be FALSE if the notification type is ‘packet 
acknowledged’. 

radiation stop time Must not be NULL if ‘packets completed’ is TRUE 

production status Must not be ‘invalid. 

CCSDS 916.3-M-1 Page A-25 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3.4 FSP STATUS REPORT OPERATION 

Name IFSP_StatusReport 
GUID {91DCEBA3-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation 
File IFSP_StatusReport.H 

The interface provides access to the parameters of the unconfirmed operation 
FSP-STATUS-REPORT. 

Synopsis 
#include <FSP_Types.h> 
#include <ISLE_Operation.H> 
interface ISLE_Time; 
 
#define IID_IFSP_StatusReport_DEF { 0x91dceba3, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_StatusReport : ISLE_Operation 
{ 
  virtual bool 
    Get_PacketsProcessed() const = 0; 
  virtual FSP_PacketId 
    Get_PacketLastProcessed() const = 0; 
  virtual const ISLE_Time* 
    Get_ProductionStartTime() const = 0; 
  virtual FSP_PacketStatus 
    Get_PacketStatus() const = 0; 
  virtual bool 
    Get_PacketsCompleted() const = 0; 
  virtual FSP_PacketId 
    Get_PacketLastOk() const = 0; 
  virtual const ISLE_Time* 
    Get_ProductionStopTime() const = 0; 
  virtual FSP_ProductionStatus 
    Get_ProductionStatus() const = 0; 
  virtual unsigned long 
    Get_NumberOfADPacketsReceived() const = 0; 
  virtual unsigned long 
    Get_NumberOfBDPacketsReceived() const = 0; 
  virtual unsigned long 
    Get_NumberOfADPacketsProcessed() const = 0; 
  virtual unsigned long 
    Get_NumberOfBDPacketsProcessed() const = 0; 
  virtual unsigned long 
    Get_NumberOfADPacketsRadiated() const = 0; 
  virtual unsigned long 
    Get_NumberOfBDPacketsRadiated() const = 0; 
  virtual unsigned long 
    Get_NumberOfPacketsAcknowledged() const = 0; 
  virtual FSP_BufferSize 
    Get_PacketBufferAvailable() const = 0; 
  virtual void 
    Set_PacketLastProcessed( FSP_PacketId id ) = 0; 
  virtual void 

CCSDS 916.3-M-1 Page A-26 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

    Set_ProductionStartTime( const ISLE_Time& startTime ) = 0; 
  virtual void 
    Put_ProductionStartTime( ISLE_Time* pstartTime ) = 0; 
  virtual void 
    Set_PacketStatus( FSP_PacketStatus status ) = 0; 
  virtual void 
    Set_PacketLastOk( FSP_PacketId id ) = 0; 
  virtual void 
    Set_ProductionStopTime( const ISLE_Time& stopTime ) = 0; 
  virtual void 
    Put_ProductionStopTime( ISLE_Time* pstopTime ) = 0; 
  virtual void 
    Set_ProductionStatus( FSP_ProductionStatus status ) = 0; 
  virtual void 
    Set_NumberOfADPacketsReceived( unsigned long numRecv ) = 0; 
  virtual void 
    Set_NumberOfBDPacketsReceived( unsigned long numRecv ) = 0; 
  virtual void 
    Set_NumberOfADPacketsProcessed( unsigned long numProc ) = 0; 
  virtual void 
    Set_NumberOfBDPacketsProcessed( unsigned long numProc ) = 0; 
  virtual void 
    Set_NumberOfADPacketsRadiated( unsigned long numRad ) = 0; 
  virtual void 
    Set_NumberOfBDPacketsRadiated( unsigned long numRad ) = 0; 
  virtual void 
    Set_NumberOfPacketsAcknowledged( unsigned long numAck ) = 0; 
  virtual void 
    Set_PacketBufferAvailable( FSP_BufferSize size ) = 0; 
}; 

Methods 

bool Get_PacketsProcessed() const; 

Returns true if at least one packet started processing.  This condition is true if the number of 
AD and BD packets processed are not both zero. 

FSP_PacketId Get_PacketLastProcessed() const; 

Returns the identification of the packet last processed. 

Precondition: Get_PacketsProcessed() returns true. 

const ISLE_Time* Get_ProductionStartTime() const; 

Returns a pointer to the radiation start time of the last packet processed, if the parameter has 
been set.  Otherwise returns a NULL pointer. 

CCSDS 916.3-M-1 Page A-27 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP_Status Get_PacketStatus() const; 

Returns the status of the last packet for which processing started. 

Precondition: Get_PacketsProcessed() returns true. 

bool Get_PacketsCompleted() const; 

Returns true if at least one packet successfully completed processing.  The condition is true if 
the number of BD packets radiated and the number of AD packets acknowledged are not 
both zero. 

FSP_PacketId Get_PacketLastOk() const; 

Returns the identification of the last packet which successfully completed processing. 

Precondition: Get_PacketsCompleted() returns true. 

const ISLE_Time* Get_ProductionStopTime() const; 

Returns a pointer to the production stop time of the last packet that successfully completed 
processing, if the parameter has been set.  Otherwise returns a NULL pointer. 

FSP_ProductionStatus Get_ProductionStatus() const; 

Returns the current value of the production status. 

unsigned long Get_NumberOfADPacketsReceived() const; 

Returns the number of AD packets that have been received and accepted by the provider. 

unsigned long Get_NumberOfBDPacketsReceived() const; 

Returns the number of BD packets that have been received and accepted by the provider. 

unsigned long Get_NumberOfADPacketsProcessed() const; 

Returns the number of AD packets for which processing was started. 

unsigned long Get_NumberOfBDPacketsProcessed() const; 

Returns the number of BD packets for which processing was started. 

unsigned long Get_NumberOfADPacketsRadiated() const; 

Returns the number of AD packets that have been successfully radiated by the provider. 

CCSDS 916.3-M-1 Page A-28 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

unsigned long Get_NumberOfBDPacketsRadiated() const; 

Returns the number of BD packets that have been successfully radiated by the provider. 

unsigned long Get_NumberOfPacketsAcknowledged() const; 

Returns the number of packets that have been acknowledged via the CLCW. 

FSP_BufferSize Get_PacketBufferAvailable() const; 

Returns the size of the available packet buffer in octets. 

void Set_ProductionStartTime( const ISLE_Time& startTime ); 

Sets the production start time of the packet last processed to a copy of the input argument. 

void Put_ProductionStartTime( ISLE_Time* pstartTime ); 

Stores the input argument to the parameter production start time. 

void Set_PacketStatus( FSP_Status status ); 

Sets the status of the packet last processed. 

void Set_PacketLastOk( FSP_PacketId id ); 

Sets the identification of the last packet, which successfully completed production. 

void Set_ProductionStopTime( const ISLE_Time& stopTime ); 

Sets the production stop time of the packet last that successfully completed production to a 
copy of the input argument. 

void Put_ProductionStopTime( ISLE_Time* pstopTime ); 

Stores the input argument to the parameter production stop time. 

void Set_ProductionStatus( FSP_ProductionStatus status ); 

Sets the value of the production status. 

void Set_NumberOfADPacketsReceived( unsigned long numRecv ); 

Sets the number of AD packets received and accepted by the provider. 

CCSDS 916.3-M-1 Page A-29 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_NumberOfBDPacketsReceived( unsigned long numRecv ); 

Sets the number of BD packets received and accepted by the provider. 

void Set_NumberOfADPacketsProcessed( unsigned long numProc ); 

Sets the number of AD packets for which processing was started. 

void Set_NumberOfBDPacketsProcessed( unsigned long numProc ); 

Sets the number of BD packets for which processing was started. 

void Set_NumberOfADPacketsRadiated( unsigned long numRad ); 

Sets the number of AD packets successfully radiated by the provider. 

void Set_NumberOfBDPacketsRadiated( unsigned long numRad ); 

Sets the number of BD packets successfully radiated by the provider. 

void Set_NumberOfPacketsAcknowledged( unsigned long numRad ); 

Sets the number of packets acknowledged via the CLCW. 

void Set_PacketBufferAvailable( FSP_BufferSize size ); 

Sets the available buffer size. 

Initial Values of Operation Parameters after Creation 

The interface ISLE_SIOpFactory does not support creation of status report operation 
objects, as this operation is handled by the service instance internally. 

CCSDS 916.3-M-1 Page A-30 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Parameter Created directly 

packet identification last processed 0 

production start time NULL (not used) 

packet status ‘invalid’ 

packet identification last OK 0 

production stop time NULL (not used) 

production status ‘invalid’ 

number of AD packets received 0 

number of BD packets received 0 

number of AD packets processed 0 

number of BD packets processed 0 

number of AD packets radiated 0 

number of AD packets radiated 0 

number of AD packets acknowledged 0 

packet buffer available 0 

Checking of Invocation Parameters 

Parameter Required condition 

production start time Must not be NULL if number of AD packets processed > 0 
OR number of BD packets processed > 0 

packet status Must not be ‘invalid’ if number of AD packets processed > 0 
OR number of BD packets processed > 0 

production stop time Must not be NULL if number of BD packets radiated > 0 OR 
number of AD packets acknowledged > 0 

production status Must not be ‘invalid’ 

number of packets AD received Must be ≥ number of AD packets processed 

number of packets BD received Must be ≥ number of BD packets processed 

number of AD packets processed Must be ≥ number of AD packets radiated and ≤ number of 
packets AD received 

number of BD packets processed Must be ≥ number of BD packets radiated and ≤ number of 
packets BD received 

number of AD packets radiated Must be ≤ number of AD packets processed 

number of BD packets radiated Must be ≤ number of BD packets processed 

number of AD packets acknowledged Must be ≤ number of AD packets radiated 

CCSDS 916.3-M-1 Page A-31 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3.5 FSP GET PARAMETER OPERATION 

Name IFSP_GetParameter 
GUID {91DCEBA4-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation 
File IFSP_GetParameter.H 

The interface provides access to the parameters of the confirmed operation 
FSP-GET-PARAMETER. 

Synopsis 
#include <FSP_Types.h> 
#include <ISLE_ConfirmedOperation.H> 
 
#define IID_IFSP_GetParameter_DEF { 0x91dceba4, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_GetParameter : ISLE_ConfirmedOperation 
{ 
  virtual FSP_ParameterName 
    Get_RequestedParameter() const = 0; 
  virtual FSP_ParameterName 
    Get_ReturnedParameter() const = 0; 
  virtual const FSP_ApId* 
    Get_ApIdList( int& size ) const = 0; 
  virtual unsigned long 
    Get_BlockingTimeout() const = 0; 
  virtual FSP_BlockingUsage 
    Get_BlockingUsage() const = 0; 
  virtual SLE_DeliveryMode 
    Get_DeliveryMode() const = 0; 
  virtual SLE_YesNo 
    Get_DirectiveInvocationEnabled() const = 0; 
  Virtual SLE_YesNo 
    Get_DirectiveInvocationOnline() const = 0; 
  virtual FSP_DirectiveId 
    Get_ExpectedDirectiveId() const = 0; 
  virtual FSP_EventInvocationId 
    Get_ExpectedEventInvocationId() const = 0; 
  virtual FSP_PacketId 
    Get_ExpectedSlduId() const = 0; 
  virtual unsigned long 
    Get_FopSlidingWindow() const = 0; 
  virtual FSP_FopState 
    Get_FopState() const = 0; 
  virtual const FSP_MapId* 
    Get_MapList( int& size ) const = 0; 
  virtual const FSP_AbsolutePriority* 
    Get_MapPriorityList( int& size ) const = 0; 
  virtual const FSP_MapId* 
    Get_MapPollingVector( int& size ) const = 0; 
  virtual FSP_MuxScheme 
    Get_MapMuxScheme() const = 0; 
  virtual unsigned long 
    Get_MaxFrameLength() const = 0; 

CCSDS 916.3-M-1 Page A-32 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

  virtual unsigned long 
    Get_MaxPacketLength() const = 0; 
  virtual FSP_PermittedTransmissionMode 
    Get_PermittedTransmissionMode() const = 0; 
  virtual unsigned long 
    Get_ReportingCycle() const = 0; 
  virtual unsigned long 
    Get_ReturnTimeoutPeriod() const = 0; 
  virtual SLE_YesNo 
    Get_SegmentHeaderPresent() const = 0; 
  virtual FSP_TimeoutType 
    Get_TimeoutType() const = 0; 
  virtual unsigned long 
    Get_TimerInitial() const = 0; 
  virtual unsigned long 
    Get_TransmissionLimit() const = 0; 
  virtual unsigned long 
    Get_TransmitterFrameSequenceNumber() const = 0; 
  virtual const FSP_AbsolutePriority* 
    Get_VcPriorityList( int& size ) const = 0; 
  virtual const FSP_VcId* 
    Get_VcPollingVector( int& size ) const = 0; 
  virtual FSP_MuxScheme 
    Get_VcMuxScheme() const = 0; 
  virtual FSP_VcId 
    Get_VirtualChannel() const = 0; 
  virtual FSP_GetParameterDiagnostic 
    Get_GetParameterDiagnostic() const = 0; 
  virtual void 
    Set_RequestedParameter( FSP_ParameterName name ) = 0; 
  virtual void 
    Set_ApIdList( const FSP_ApId* plist, 
                  int size ) = 0; 
  virtual void 
    Put_ApIdList( FSP_ApId* plist, 
                  int size ) = 0; 
  virtual void 
    Set_BlockingTimeout( unsigned long timeout ) = 0; 
  virtual void 
    Set_BlockingUsage( FSP_BlockingUsage usage ) = 0; 
  virtual void 
    Set_DeliveryMode() = 0; 
  virtual void 
    Set_DirectiveInvocationEnabled( SLE_YesNo yesNo ) = 0; 
  virtual void 
    Set_DirectiveInvocationOnline( SLE_YesNo yesNo ) 
  virtual void 
    Set_ExpectedDirectiveId( FSP_DirectiveId id) = 0; 
  virtual void 
    Set_ExpectedEventInvocationId( FSP_EventInvocationId id) = 0; 
  virtual void 
    Set_ExpectedSlduId( FSP_PacketId id ) = 0; 
  virtual void 
    Set_FopSlidingWindow( unsigned long window ) = 0; 
  virtual void 
    Set_FopState( FSP_FopState state ) = 0; 
  virtual void 
    Set_MapList( const FSP_MapId* plist, 
                 int size ) = 0; 
  virtual void 

CCSDS 916.3-M-1 Page A-33 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

    Put_MapList( FSP_MapId* plist, 
                 int size ) = 0; 
  virtual void 
    Set_MapPriorityList( const FSP_AbsolutePriority* priorities, 
                         int size ) = 0; 
  virtual void 
    Put_MapPriorityList( FSP_AbsolutePriority* priorities, 
                         int size ) = 0; 
  virtual void 
    Set_MapPollingVector( const FSP_MapId* pvec, 
                          int size ) = 0; 
  virtual void 
    Put_MapPollingVector( FSP_MapId* pvec, 
                          int size ) = 0; 
  virtual void 
    Set_MapMuxScheme( FSP_MuxScheme scheme ) = 0; 
  virtual void 
    Set_MaxFrameLength( unsigned long length ) = 0; 
  virtual void 
    Set_MaxPacketLength( unsigned long length ) = 0; 
  virtual void 
    Set_PermittedTransmissionMode( FSP_PermittedTransmissionMode mode) = 0; 
  virtual void 
    Set_ReportingCycle(unsigned long cycle ) = 0; 
  virtual void 
    Set_ReturnTimeoutPeriod( unsigned long period) = 0; 
  virtual void 
    Set_SegmentHeaderPresent( SLE_YesNo yesNo ) = 0; 
  virtual void 
    Set_TimeoutType( FSP_TimeoutType type ) = 0; 
  virtual void 
    Set_TimerInitial( unsigned long timeout ) = 0; 
  virtual void 
    Set_TransmissionLimit( unsigned long limit ) = 0; 
  virtual void 
    Set_TransmitterFrameSequenceNumber( unsigned long number ) = 0; 
  virtual void 
    Set_VcPriorityList( const FSP_AbsolutePriority* priorities, 
                        int size ) = 0; 
  virtual void 
    Put_VcPriorityList( FSP_AbsolutePriority* priorities, 
                        int size ) = 0; 
  virtual void 
    Set_VcPollingVector( const FSP_VcId* pvec, 
                         int size ) = 0; 
  virtual void 
    Put_VcPollingVector( FSP_VcId* pvec, 
                         int size ) = 0; 
  virtual void 
    Set_VcMuxScheme( FSP_MuxScheme scheme ) = 0; 
  virtual void 
    Set_VirtualChannel( FSP_VcId id ) = 0; 
  virtual void 
    Set_GetParameterDiagnostic 
    ( FSP_GetParameterDiagnostic diagnostic ) = 0; 
}; 

CCSDS 916.3-M-1 Page A-34 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Methods 

FSP_ParameterName Get_RequestedParameter() const; 

Returns the parameter for which the value shall be reported. 

FSP_ParameterName Get_ReturnedParameter() const; 

Returns the parameter for which the value is reported.  Following the return, this must be 
identical to the result of Get_RequestedParameter(). 

const FSP_ApId* Get_ApIdList( int& size ) const; 

Returns an array of Application Process Identifiers to which the service instance has access, 
or NULL if any API may be accessed. 

Precondition: the returned parameter is apid-list. 

Arguments 

size set to the number of identifiers in the list (zero, if no list is supplied) 

unsigned long Get_BlockingTimeout() const; 

Returns timeout period in milliseconds for blocking of packets.  If blocking is not used, 
returns zero. 

Precondition: the returned parameter is blocking-timeout-period. 

FSP_BlockingUsage Get_BlockingUsage() const; 

Returns a specification whether blocking of packets is permitted. 

Precondition: the returned parameter is blocking-usage. 

SLE_DeliveryMode Get_DeliveryMode() const; 

Returns ‘forward online’. 

Precondition: the returned parameter is delivery-mode. 

SLE_YesNo Get_DirectiveInvocationEnabled() const; 

Returns whether this service instance is authorized to invoke the FSP-INVOKE-DIRECTIVE 
operation. 

Precondition: the returned parameter is directive-invocation-enabled. 

CCSDS 916.3-M-1 Page A-35 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

SLE_YesNo Get_DirectiveInvocationOnline() const; 

Returns ‘yes’ if a service instance with directive invocation capability is currently bound to 
the service provider and ‘no’ otherwise. 

Precondition: the returned parameter is directive-invocation-online. 

FSP_DirectiveId Get_ExpectedDirectiveId() const; 

Returns the next expected directive identification. 

Precondition: the returned parameter is expected-directive-identification. 

FSP_EventInvocationId Get_ExpectedEventInvocationId() const; 

Returns the next expected event invocation identifier. 

Precondition: the returned parameter is expected-event-invocation-
identification. 

FSP_PacketId Get_ExpectedSlduId() const; 

Returns the next expected packet identification. 

Precondition: the returned parameter is expected-sldu-identification and the 
value has been set via a START invocation or as result of a TRANSFER DATA operation. 

unsigned long Get_FopSlidingWindow() const; 

Returns the width of the FOP sliding window. 

Precondition: the returned parameter is fop-sliding-window. 

FSP_FopState Get_FopState() const; 

Returns the state of the FOP. 

Precondition: the returned parameter is fop-state. 

const FSP_MapId* Get_MapList( int& size ) const; 

Returns an array of MAP identifiers for the MAPs that can be used by the service instance.  
If no MAPs are used returns a NULL pointer. 

Precondition: the returned parameter is map-list. 

CCSDS 916.3-M-1 Page A-36 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

size set to the number of identifiers in the list 

const FSP_AbsolutePriority* Get_MapPriorityList(int& size) const; 

Returns the priority specification for multiplexing on MAPs if the multiplexing scheme is 
‘absolute priority’.  The priority specification is an array of ‘map id’ - ‘priority’ pairs.  If the 
multiplexing scheme is FIFO or ‘polling vector’, or if MAPs are not used, returns NULL. 

Precondition: the returned parameter is map-multiplexing-control. 

Arguments 

size set to the number of ‘map id’ - ‘priority’ pairs in the list 

const FSP_MapId* Get_MapPollingVector( int& size ) const; 

Returns the polling vector for multiplexing on MAPs if the multiplexing scheme is ‘polling 
vector’.  The polling vector is an array of MAP identifiers.  If the multiplexing scheme is 
FIFO or ‘absolute priority’, or if MAPs are not used, returns NULL. 

Precondition: the returned parameter is map-multiplexing-control. 

Arguments 

size set to the number of identifiers in the list 

FSP_MuxScheme Get_MapMuxScheme() const; 

Returns the multiplexing scheme in effect for MAPs.  If MAPs are not used, the parameter is 
set to ‘invalid’. 

Precondition: the returned parameter is map-multiplexing-scheme. 

unsigned long Get_MaxFrameLength() const; 

Returns the maximum length of a TC frame in octets. 

Precondition: the returned parameter is maximum-frame-length. 

unsigned long Get_MaxPacketLength() const; 

Returns the maximum length of a packet in octets. 

Precondition: the returned parameter is maximum-packet-length. 

CCSDS 916.3-M-1 Page A-37 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP_PermittedTransmissionMode Get_PermittedTransmissionMode() const; 

Returns the permitted transmission mode. 

Precondition: the returned parameter is permitted-transmission-mode. 

unsigned long GetReportingCycle() const; 

Returns the reporting cycle requested by the user if periodic reporting is active.  If reporting 
is not active, returns zero. 

Precondition: the returned parameter is reporting-cycle. 

unsigned long Get_ReturnTimeoutPeriod() const; 

Returns the return timeout period used by the provider. 

Precondition: the returned parameter is return-timeout-period. 

SLE_YesNo Get_SegmentHeaderPresent() const; 

Returns whether segment headers are used. 

Precondition: the returned parameter is segment-header. 

FSP_TimeoutType Get_TimeoutType() const; 

Returns the FOP timeout type parameter, which specifies how the FOP reacts when the 
maximum number of retransmissions has been exceeded. 

Precondition: the returned parameter is timeout-type. 

unsigned long Get_TimerInitial() const; 

Returns the initial value of the countdown timer in microseconds when an AD or BC frame is 
transmitted. 

Precondition: the returned parameter is timer-initial. 

unsigned long Get_TransmissionLimit() const; 

Returns the maximum number of times the first frame on the Sent-Queue may be transmitted. 

Precondition: the returned parameter is transmission-limit. 

CCSDS 916.3-M-1 Page A-38 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

unsigned long Get_TransmitterFrameSequenceNumber() const; 

Returns the Transmitter Frame Sequence Number, V(S), which contains the value of the 
Frame Sequence Number, N(S), to be put in the Transfer Frame Header of the next Type-AD 
frame to be transmitted. 

Precondition: the returned parameter is transmitter-frame-sequence-number. 

const FSP_AbsolutePriority* Get_VcPriorityList( int& size ) const; 

Returns the priority specification for multiplexing on VCs if the multiplexing scheme is 
‘absolute priority’.  The priority specification is an array of ‘VC ID’ - ‘priority’ pairs.  If the 
multiplexing scheme is FIFO or ‘polling vector’, returns NULL. 

Precondition: the returned parameter is vc-multiplexing-control. 

Arguments 

size set to the number of ‘VC ID’ - ‘priority’ pairs in the list 

const FSP_VcId* Get_VcPollingVector( int& size ) const; 

Returns the polling vector for multiplexing on VCs if the multiplexing scheme is ‘polling 
vector’.  The polling vector is an array of VC IDs.  If the multiplexing scheme is FIFO or 
‘absolute priority’, returns NULL. 

Precondition: the returned parameter is vc-multiplexing-control. 

Arguments 

size set to the number of identifiers in the list 

FSP_MuxScheme Get_VcMuxScheme() const; 

Returns the multiplexing scheme in effect for VCs. 

Precondition: the returned parameter is vc-multiplexing-scheme. 

FSP_VcId Get_VirtualChannel() const; 

Returns the VC being used by this service instance. 

Precondition: the returned parameter is virtual-channel. 

CCSDS 916.3-M-1 Page A-39 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP_GetParameterDiagnostic Get_GetParameterDiagnostic() const; 

Returns the diagnostic code. 

Precondition: the result is negative, and the diagnostic type is set to ‘specific’. 

void Set_RequestedParameter( FSP_ParameterName name ); 

Sets the parameter for which the provider shall report the value. 

void Set_ApIdList( const FSP_ApId* plist, int size ); 

Sets the returned parameter name to apid-list and copies the list supplied by the 
arguments to that parameter. The parameter plist may be set to NULL to indicate that any 
APID can be accessed. 

Arguments 

plist array of application process identifiers where each APID must be in the range 0 to 
2047, or NULL 

size number of identifiers in the array 

void Put_ApIdList( FSP_ApId* plist, int size ); 

Sets the returned parameter name to apid-list and stores the list supplied by the 
arguments to that parameter. The parameter plist may be set to NULL to indicate that any 
APID can be accessed. 

Arguments 

plist array of application process identifiers where each APID must be in the range 0 to 
2047 or, NULL 

size number of identifiers in the array 

void Set_BlockingTimeout( unsigned long timeout ); 

Sets the returned parameter name to blocking-timeout-period and sets its value as 
defined by the argument. 

void Set_BlockingUsage( FSP_BlockingUsage usage ); 

Sets the returned parameter name to blocking-usage and sets its value as defined by the 
argument. 

CCSDS 916.3-M-1 Page A-40 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_DeliveryMode(); 

Sets the returned parameter name to delivery-mode and sets its value to ‘fwd online’. 

void Set_DirectiveInvocationEnabled( SLE_YesNo yesNo ); 

Specifies whether directive invocation is enabled for the service instance. 

void Set_DirectiveInvocationOnline( SLE_YesNo yesNo ) 

Specifies whether a service instance with directive invocation for the VC enabled is currently 
bound to the service provider. 

void Set_ExpectedDirectiveId( FSP_DirectiveId id); 

Sets the returned parameter name to expected-directive-id and sets its value as 
defined by the argument. 

void Set_ExpectedEventInvocationId( FSP_EventInvocationId id ); 

Sets the returned parameter name to expected-event-invocation-id and sets its 
value as defined by the argument. 

void Set_ExpectedSlduId( FSP_PacketId id ); 

Sets the returned parameter name to expected-sldu-identification and sets its 
value as defined by the argument. 

void Set_FopSlidingWindow( unsigned long window ); 

Sets the returned parameter name to ‘fop-sliding-window’ and sets its value as defined by the 
argument. 

void Set_FopState( FSP_FopState state ); 

Sets the returned parameter name to fop-state and sets its value as defined by the 
argument. 

void Set_MapList( const FSP_MapId* plist, int size ); 

Sets the returned parameter name to map-list and copies the list supplied by the 
arguments to that parameter. 

CCSDS 916.3-M-1 Page A-41 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

plist array of MAP IDs (each MAP ID must be in the range 0 to 63) 

size number of identifiers in the array 

void Put_MapList( FSP_MapId* plist, int size ); 

Sets the returned parameter name to map-list and stores the list supplied by the arguments 
to that parameter. 

Arguments 

plist array of MAP IDs (each MAP ID must be in the range 0 to 63) 

size number of identifiers in the array 

void  
Set_MapPriorityList( const FSP_AbsolutePriority* priorities,  
                     int size); 

Sets the returned parameter name to map-multiplexing-control and copies the list 
supplied by the arguments to that parameter.  Clears the map polling vector if that is set in 
the object.  This method must be used when the multiplexing scheme is ‘absolute priority’. 

Arguments 

plist array of MAP ID / Priority pairs as defined by FSP_AbsolutePriority 
(each MAP ID must be in the range 0 to 63 and each priority in the range 1 to 64) 

size number of structures in the array 

void Put_MapPriorityList( FSP_AbsolutePriority* priorities,  
                          int size ); 

Sets the returned parameter name to map-multiplexing-control and stores the list 
supplied by the arguments to that parameter.  Clears the map polling vector if that is set in 
the object.  This method must be used when the multiplexing scheme is ‘absolute priority’. 

Arguments 

plist array of MAP ID / Priority pairs as defined by FSP_AbsolutePriority 
(each MAP ID must be in the range 0 to 63 and each priority in the range 1 to 64) 

size number of structures in the array 

CCSDS 916.3-M-1 Page A-42 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_MapPollingVector( const FSP_MapId* pvec, int size ); 

Sets the returned parameter name to map-multiplexing-control and copies the list 
supplied by the arguments to that parameter.  Clears the map priority list if that is set in the 
object.  This method must be used when the multiplexing scheme is ‘polling vector’. 

Arguments 

pvec array of MAP IDs (each MAP ID must be in the range 0 to 63) 

size number of identifiers in the array 

void Put_MapPollingVector( FSP_MapId* pvec, int size ); 

Sets the returned parameter name to map-multiplexing-control and stores the list 
supplied by the arguments to that parameter.  Clears the map priority list if that is set in the 
object.  This method must be used when the multiplexing scheme is ‘polling vector’. 

Arguments 

pvec array of MAP IDs (each MAP ID must be in the range 0 to 63) 

size number of identifiers in the array 

void Set_MapMuxScheme( FSP_MuxScheme scheme ); 

Sets the returned parameter name to map-multiplexing-scheme and sets its value as 
defined by the argument. 

void Set_MaxFrameLength( unsigned long length ); 

Sets the returned parameter name to maximum-frame-length and sets its value as 
defined by the argument. 

void Set_MaxPacketLength( unsigned long length ); 

Sets the returned parameter name to maximum-packet-length and sets its value as 
defined by the argument. 

void  
Set_PermittedTransmissionMode( FSP_PermittedTransmissionMode mode ); 

Sets the returned parameter name to permitted-transmission-mode and sets its 
value as defined by the argument. 

CCSDS 916.3-M-1 Page A-43 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_ReportingCycle(unsigned long cycle ); 

Sets the returned parameter name to reporting-cycle and sets its value as defined by 
the argument. 

void Set_ReturnTimeoutPeriod( unsigned long period); 

Sets the returned parameter name to return-timeout-period and sets its value as 
defined by the argument. 

void Set_SegmentHeaderPresent( SLE_YesNo yesNo ); 

Sets the returned parameter name to segment-header and sets its value as defined by the 
argument. 

void Set_TimeoutType( FSP_TimeoutType type ); 

Sets the returned parameter name to timeout-type and sets its value as defined by the 
argument. 

void Set_TimerInitial( unsigned long timeout ); 

Sets the returned parameter name to timer-initial and sets its value as defined by the 
argument. 

Arguments 

timeout the initial value of the FOP countdown timer in microseconds 

void Set_TransmissionLimit( unsigned long limit ); 

Sets the returned parameter name to transmission-limit and sets its value as defined 
by the argument. 

Arguments 

limit the maximum number a frame may be transmitted in the range 1 to 255 

void Set_TransmitterFrameSequenceNumber( unsigned long number ); 

Sets the returned parameter name to transmitter-frame-sequence-number and 
sets its value as defined by the argument. 

CCSDS 916.3-M-1 Page A-44 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

number the current value of the Transmitter Frame Sequence Number, V(S), which 
contains the value of the Frame Sequence Number, N(S), to be put in the Transfer 
Frame Header of the next Type-AD frame to be transmitted.  The value must be in 
the range 0 to 255. 

void  
Set_VcPriorityList(const FSP_AbsolutePriority* priorities,int size); 

Sets the returned parameter name to vc-multiplexing-control and copies the list 
supplied by the arguments to that parameter.  Clears the VC polling vector if that is set in the 
object.  This method must be used when the multiplexing scheme is ‘absolute priority’. 

Arguments 

plist array of VC ID / Priority pairs as defined by FSP_AbsolutePriority 
(each VC ID must be in the range 0 to 63 and each priority in the range 1 to 64) 

size number of structures in the array 

void  
Put_VcPriorityList( FSP_AbsolutePriority* priorities,  
                    int size ); 

Sets the returned parameter name to vc-multiplexing-control and stores the list 
supplied by the arguments to that parameter.  Clears the VC polling vector if that is set in the 
object.  This method must be used when the multiplexing scheme is ‘absolute priority’. 

Arguments 

plist array of VC ID / Priority pairs as defined by FSP_AbsolutePriority 
(each VC ID must be in the range 0 to 63 and each priority in the range 1 to 64) 

size number of structures in the array 

void Set_VcPollingVector( const FSP_VcId* pvec, int size ); 

Sets the returned parameter name to vc-multiplexing-control and copies the list 
supplied by the arguments to that parameter.  Clears the VC priority list if that is set in the 
object.  This method must be used when the multiplexing scheme is ‘polling vector’. 

Arguments 

pvec array of VC IDs (each VC ID must be in the range 0 to 63) 

size number of identifiers in the array 

CCSDS 916.3-M-1 Page A-45 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Put_VcPollingVector( FSP_VcId* pvec, int size ); 

Sets the returned parameter name to vc-multiplexing-control and stores the list 
supplied by the arguments to that parameter.  Clears the VC priority list if that is set in the 
object.  This method must be used when the multiplexing scheme is ‘polling vector’. 

Arguments 

pvec array of VC IDs (each VC ID must be in the range 0 to 63) 

size number of identifiers in the array 

void Set_VcMuxScheme( FSP_MuxScheme scheme ); 

Sets the returned parameter name to vc-multiplexing-scheme and sets its value as 
defined by the argument. 

void Set_VirtualChannel( FSP_VcId id ); 

Sets the returned parameter name to virtual-channel and sets its value as defined by 
the argument. 

Arguments 

id the value if the VC ID used by the service instance 

void  
Set_GetParameterDiagnostic( FSP_GetParameterDiagnostic diagnostic ); 

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the 
diagnostic code passed by the argument. 

CCSDS 916.3-M-1 Page A-46 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Initial Values of Operation Parameters after Creation 

Parameter Created directly Created by Service Instance 

requested parameter ‘invalid’ ‘invalid’ 

returned parameter ‘invalid’ ‘invalid’ 

apid list NULL NULL 

blocking timeout period 0 0 

blocking usage ‘invalid’ ‘invalid’ 

directive invocation enabled ‘invalid’ ‘invalid’ 

directive invocation online ‘invalid’ ‘invalid’ 

expected sldu identification 0 0 

expected event invocation 
identification 

0 0 

expected directive identification 0 0 

fop-sliding-window 0 0 

fop-state ‘invalid’ ‘invalid’ 

map list NULL NULL 

map multiplexing control  
(priority list) 

NULL NULL 

map-multiplexing-control  
(polling vector) 

NULL NULL 

map-multiplexing-scheme ‘invalid’ ‘invalid’ 

maximum frame length 0 0 

maximum packet length 0 0 

permitted transmission mode ‘invalid’ ‘invalid’ 

reporting cycle 0 0 

return timeout period 0 0 

segment header ‘invalid’ ‘invalid’ 

timeout-type ‘invalid’ ‘invalid’ 

timer-initial 0 0 

transmission-limit 0 0 

transmitter-frame-sequence-
number 

0 0 

vc multiplexing control 
(priority list) 

NULL NULL 

vc multiplexing scheme 
(polling vector) 

NULL NULL 

virtual channel 0 0 

GET PARAMETER diagnostic ‘invalid’ ‘invalid’ 

CCSDS 916.3-M-1 Page A-47 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Checking of Invocation Parameters 

Parameter Required condition 

requested parameter must not be ‘invalid’ 

Checking of Return Parameters 
The interface ensures consistency between the returned parameter name and the parameter 
value, as the client cannot set the returned parameter name.  The consistency checks defined 
below only need to be performed when the return is received by the service user.  The 
method VerifyReturnArguments() might nevertheless be called on the provider side 
to check the permissible range of parameter arguments, unless the service element ensures 
that all values are within the range specified. 

 
Parameter Required condition 

returned parameter must be the same as the requested parameter 

apid list if not NULL; each element in the list must be in the range 0 to 2047; if 
the returned parameter is ‘apid list’, a NULL value indicates that any 
APID may be accessed. 

blocking timeout period if the returned parameter is ‘blocking timeout period’ must be either a 
value between 100 and 100,000 or must be zero (blocking off). 

blocking usage if the returned parameter is ‘blocking usage’ must not be ‘invalid’  

directive invocation enabled if the returned parameter is ‘directive invocation enabled’ must not be 
‘invalid’ 

fop-sliding-window if the returned parameter is ‘fop-sliding-window’ must be in the range  
1 to 255 

fop-state if the returned parameter is ‘fop-state’ must not be ‘invalid’ 

map list if the returned parameter is ‘map list’ must be either NULL or must 
contain 1 to 64 MAP identifiers.  Each MAP ID must be in the range 
0 to 63. 

map-multiplexing-control 
(priority list) 

if the returned parameter is ‘map-multiplexing-control’ must be one of 
the following: 
NULL (scheme FIFO or polling vector); 
A list of 1 to 64 pairs of ‘MAP ID’ - ‘Priority’; The value of the MAP ID 
must be in the range 0 to 63 and the priority must be in the range 1 to 
64; 

map-multiplexing-control 
(polling vector) 

if the returned parameter is ‘map-multiplexing-control’ must be one of 
the following: 
NULL (scheme FIFO or absolute priority); 
A list of 1 to 192 MAP IDs.  Each MAP ID must be in the range 0 to 63. 

map-multiplexing-scheme if the returned parameter is ‘map-multiplexing-scheme’ must not be 
‘invalid’ 

maximum frame length if the returned parameter is ‘maximum frame length’ must be in the 
range 12 to 1024. 

CCSDS 916.3-M-1 Page A-48 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Parameter Required condition 

maximum packet length if the returned parameter is ‘maximum packet length’ must be in the 
range 7 to 65542. 

permitted transmission mode if the returned parameter is ‘permitted transmission mode’ must not be 
‘invalid’ 

return timeout period if the returned parameter is ‘return timeout period ‘must not be 0  

segment header if the returned parameter is ‘segment header’ must not be ‘invalid’ 

timeout-type if the returned parameter is ‘timeout-type’ must not be ‘invalid’ 

timer-initial if the returned parameter is ‘timer-initial’ must not be zero. 

transmission-limit if the returned parameter is ‘transmission-limit’ must be in the range  
1 to 255. 

transmitter-frame-sequence-
number 

if the returned parameter is ‘transmitter-frame-sequence-number’ must 
be in the range 0 to 255 

vc multiplexing control 
(priority scheme) 

if the returned parameter is ‘vc multiplexing control’ must be one of the 
following: 
NULL (scheme FIFO or polling vector); 
A list of 1 to 64 pairs of ‘VC ID’ - ‘Priority’; The value of VC ID must be 
in the range 0 to 63 and the priority must be in the range 1 to 64; 

vc multiplexing control 
(polling vector) 

if the returned parameter is ‘vc multiplexing control’ must be one of the 
following: 
NULL (scheme FIFO or absolute priority); 
A list of 1 to 192 VC IDs.  Each VC ID must be in the range 0 to 63. 

vc multiplexing scheme if the returned parameter is ‘vc multiplexing scheme’ must not be 
‘invalid’ 

virtual channel if the returned parameter is ‘virtual channel’ must be in the range  
0 to 63. 

GET PARAMETER 
diagnostic 

must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is 
‘specific’ 

CCSDS 916.3-M-1 Page A-49 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3.6 FSP THROW EVENT OPERATION 

Name IFSP_ThrowEvent 
GUID {91DCEBA5-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation 
File IFSP_ThrowEvent.H 

The interface provides access to the parameters of the confirmed operation FSP-THROW-
EVENT. 

Synopsis 
#include <FSP_Types.h> 
#include <ISLE_ConfirmedOperation.H> 
 
#define IID_IFSP_ThrowEvent_DEF { 0x91dceba5, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_ThrowEvent : ISLE_ConfirmedOperation 
{ 
  virtual unsigned short 
    Get_EventId() const = 0; 
  virtual const SLE_Octet* 
    Get_EventQualifier( size_t& size ) const = 0; 
  virtual FSP_EventInvocationId 
    Get_EventInvocationId() const = 0; 
  virtual FSP_EventInvocationId 
    Get_ExpectedEventInvocationId() const = 0; 
  virtual FSP_ThrowEventDiagnostic 
    Get_ThrowEventDiagnostic() const = 0; 
  virtual void 
    Set_EventId( unsigned short id ) = 0; 
  virtual void 
    Set_EventQualifier( size_t size, const SLE_Octet* parg) = 0; 
  virtual void 
    Set_EventInvocationId( FSP_EventInvocationId id ) = 0; 
  virtual void 
    Set_ExpectedEventInvocationId( FSP_EventInvocationId id ) = 0; 
  virtual void 
    Set_ThrowEventDiagnostic (FSP_ThrowEventDiagnostic diagnostic) = 0; 
}; 

Methods 

unsigned short Get_EventId() const; 

Returns the identification of the event. 

const SLE_Octet* Get_EventQualifier( size_t& size ) const; 

Returns the event qualifier as an array of octets or NULL if the parameter has not been set in 
the object. 

CCSDS 916.3-M-1 Page A-50 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

size set to the number of octets in the parameter on return 

FSP_EventInvocationId Get_EventInvocationId() const; 

Returns the invocation identifier of the event. 

FSP_EventInvocationId Get_ExpectedEventInvocationId() const; 

Returns the next expected invocation identifier of the event in the return. 

FSP_ThrowEventDiagnostic Get_ThrowEventDiagnostic() const; 

Returns the diagnostic code. 

Precondition: the result is negative, and the diagnostic type is set to ‘specific’. 

void Set_EventId( unsigned short id ); 

Sets the identifier of the event. 

void Set_EventQualifier( size_t size, const SLE_Octet* parg); 

Copies the octet string passed as argument to the parameter ‘event qualifier’. 

Arguments 

parg pointer to the octet string 

size the number of octets in the parameter 

void Set_EventInvocationId( FSP_EventInvocationId id ); 

Sets the invocation identifier for the event in the invocation. 

void Set_ExpectedEventInvocationId( FSP_EventInvocationId id ); 

Sets the next expected invocation identifier for the event in the return. 

void Set_ThrowEventDiagnostic(FSP_ThrowEventDiagnostic diagnostic); 

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the 
diagnostic code passed by the argument. 

CCSDS 916.3-M-1 Page A-51 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Initial Values of Operation Parameters after Creation 

Parameter Created directly Created by Service Instance 

event identifier 0 0 

event argument NULL NULL 

event invocation identifier 0 0 

expected event invocation id 0 0 

THROW EVENT diagnostic ‘invalid’ ‘invalid’ 

Checking of Invocation Parameters  

Parameter Required condition 

event qualifier must not be NULL 

event qualifier length must be within limits (1 ..128) 

Checking of Return Parameters 

Parameter Required condition 

THROW EVENT diagnostic must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is 
‘specific’ 

expected event invocation id If result is ‘positive’, must be event invocation id + 1  

CCSDS 916.3-M-1 Page A-52 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A3.7 FSP INVOKE DIRECTIVE OPERATION 

Name IFSP_InvokeDirective 
GUID {91DCEBA8-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation 
File IFSP_ThrowEvent.H 

The interface provides access to the parameters of the confirmed operation 
FSP-INVOKE-DIRECTIVE. 

Synopsis 
#include <FSP_Types.h> 
#include <ISLE_ConfirmedOperation.H> 
 
#define IID_IFSP_InvokeDirective_DEF { 0x91dceba8, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_InvokeDirective : ISLE_ConfirmedOperation 
{ 
  virtual FSP_DirectiveId 
    Get_DirectiveId() const = 0; 
  virtual FSP_DirectiveId 
    Get_ExpectedDirectiveId() const = 0; 
  virtual FSP_Directive 
    Get_Directive() const = 0; 
  virtual unsigned long 
    Get_VR() const = 0; 
  virtual unsigned long 
    Get_VS() const = 0; 
  virtual unsigned long 
    Get_FopSlidingWindowWidth() const = 0; 
  virtual unsigned long 
    Get_TimerInitial() const = 0; 
  virtual unsigned long 
    Get_TransmissionLimit() const = 0; 
  virtual FSP_DirectiveTimeoutType 
    Get_TimeoutType() const = 0; 
  virtual FSP_AbsolutePriority* 
    Get_Priority( int& size ) const = 0; 
  virtual FSP_MapId* 
    Get_PollingVector( int& size ) const = 0; 
  virtual FSP_InvokeDirectiveDiagnostic 
    Get_InvokeDirectiveDiagnostic() const = 0; 
  virtual void 
    Set_DirectiveId( FSP_DirectiveId id ) = 0; 
  virtual void 
    Set_ExpectedDirectiveId( FSP_DirectiveId id ) = 0; 
  virtual void 
    Set_InitiateADwithoutCLCW() = 0; 
  virtual void 
    Set_InitiateADwithCLCW() = 0; 
  virtual void 
    Set_InitiateADwithUnlock() = 0; 
  virtual void 
    Set_InitiateADwithSetVR( unsigned long vr ) = 0; 

CCSDS 916.3-M-1 Page A-53 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

  virtual void 
    Set_TerminateAD() = 0; 
  virtual void 
    Set_ResumeAD() = 0; 
  virtual void 
    Set_VS( unsigned long vs ) = 0; 
  virtual void 
    Set_FopSlidingWindow( unsigned long width ) = 0; 
  virtual void 
    Set_TimerInitial( unsigned long timeout ) = 0; 
  virtual void 
    Set_TransmissionLimit( unsigned long limit ) = 0; 
  virtual void 
    Set_TimeoutType( FSP_DirectiveTimeoutType type ) = 0; 
  virtual void 
    Set_AbortVC() = 0; 
  virtual void 
    Set_ModifyMapPriorityList( FSP_AbsolutePriority* plist, 
                               int size ) = 0; 
  virtual void 
    Set_ModifyMapPollingVector( FSP_MapId* pvec, int size ) = 0; 
  virtual void 
    Set_InvokeDirectiveDiagnostic 
   ( FSP_InvokeDirectiveDiagnostic diag ) = 0; 
}; 

Methods 

FSP_DirectiveId Get_DirectiveId() const; 

Returns the directive identification. 

FSP_DirectiveId Get_ExpectedDirectiveId() const; 

Returns the next directive identification expected by the provider. 

FSP_Directive Get_Directive() const; 

Returns the directive. 

unsigned long Get_VR() const; 

Returns the requested value of the receiver frame sequence number V(R). 

Precondition: the directive is ‘initiate AD with set V(R)’. 

unsigned long Get_VS() const; 

Returns the requested value of the transmitter frame sequence number V(S). 

Precondition: the directive is ‘set V(S)’. 

CCSDS 916.3-M-1 Page A-54 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

unsigned long Get_FopSlidingWindowWidth() const; 

Returns the requested width of the FOP sliding window. 

Precondition: the directive is ‘set FOP sliding window width’. 

unsigned long GetTimerInitial() const; 

Returns the requested timeout value in microseconds. 

Precondition: the directive is ‘set T1 initial’. 

unsigned long Get_TransmissionLimit() const; 

Returns the requested transmission limit. 

Precondition: the directive is ‘set transmission limit’. 

FSP_DirectiveTimeoutType Get_TimeoutType() const; 

Returns the requested timeout type. 

Precondition: the directive is ‘set timeout type’. 

FSP_AbsolutePriority* Get_Priority( int& size ) const; 

Returns an array with the requested priorities for the MAPs if the list was set in the object 
(the multiplexing scheme is ‘absolute priority’).  Otherwise returns a NULL pointer. 

Precondition: the directive is ‘modify MAP multiplexing control’. 

FSP_MapId* Get_PollingVector( int& size ) const; 

Returns the requested MAP polling vector if the vector was set in the object (the 
multiplexing scheme is ‘polling vector’).  Otherwise returns a NULL pointer. 

Precondition: the directive is ‘modify MAP multiplexing control’. 

FSP_InvokeDirectiveDiagnostic Get_InvokeDirectiveDiagnostic() const; 

Returns the diagnostics code. 

Precondition: the result is negative, and the diagnostic type is set to ‘specific’. 

void Set_DirectiveId( FSP_DirectiveId id ); 

Sets the parameter ‘directive identification’ to the value passed as argument. 

CCSDS 916.3-M-1 Page A-55 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_ExpectedDirectiveId( FSP_DirectiveId id ); 

Sets the parameter ‘expected directive identification’ to the value passed as argument. 

void Set_InitiateADwithoutCLCW(); 

Sets the parameter ‘directive’ to ‘initiate AD without CLCW’. 

void Set_InitiateADwithCLCW(); 

Sets the parameter ‘directive’ to ‘initiate AD with CLCW’. 

void Set_InitiateADwithUnlock(); 

Sets the parameter ‘directive’ to ‘initiate AD with Unlock’. 

void Set_InitiateADwithSetVR( unsigned long vr ); 

Sets the parameter ‘directive’ to ‘initiate AD with Set V(R)’ and stores the requested value of 
the receiver frame sequence number V(R). 

Arguments 

vr the requested value of V(R) in the range 0 to 255 

void Set_TerminateAD(); 

Sets the parameter ‘directive’ to ‘terminate AD’. 

void Set_ResumeAD(); 

Sets the parameter ‘directive’ to ‘resume AD’. 

void Set_VS( unsigned long vs ); 

Sets the parameter ‘directive’ to ‘set V(S)’ and stores the requested value of the transmitter 
frame sequence number V(S). 

Arguments 

vs the requested value of V(S) in the range 0 to 255 

void Set_FopSlidingWindow( unsigned long width ); 

Sets the parameter ‘directive’ to ‘set FOP sliding window width’ and stores the requested 
value of the window width. 

CCSDS 916.3-M-1 Page A-56 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Arguments 

width the requested window width in the range 1 to 255 

void Set_TimerInitial( unsigned long timeout ); 

Sets the parameter ‘directive’ to ‘set T1 initial’ and stores the requested value of the timeout. 

Arguments 

timeout the requested timeout value in microseconds 

void Set_TransmissionLimit( unsigned long limit ); 

Sets the parameter ‘directive’ to ‘set transmission limit’ and stores the requested value of the 
limit. 

Arguments 

limit the requested transmission limit in the range 1 to 255 

void Set_TimeoutType( FSP_DirectiveTimeoutType type ); 

Sets the parameter ‘directive’ to ‘set timeout type’ and stores the requested value passed as 
argument. 

Arguments 

type the requested timeout type 

void Set_AbortVC(); 

Sets the parameter ‘directive’ to ‘abort VC’. 

void  
Set_ModifyMapPriorityList(FSP_AbsolutePriority* plist, int size); 

Sets the parameter ‘directive’ to ‘modify MAP multiplexing control’ and stores the priority 
list passed as argument.  This method must be used if the multiplexing scheme is ‘absolute 
priority’.  Clears the polling vector if it is set. 

Arguments 

plist the requested priority list as an array of 1 to 64 MAP ID / Priority pairs 

size the number of elements in the array (1 - 64) 

CCSDS 916.3-M-1 Page A-57 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_ModifyMapPollingVector( FSP_MapId* pvec, int size ); 

Sets the parameter ‘directive’ to ‘modify MAP multiplexing control’ and stores the polling 
vector passed as argument.  This method must be used if the multiplexing scheme is ‘polling 
vector’.  Clears the priority list if it is set. 

Arguments 

pvec the requested polling vector as an array of 1 to 192 MAP IDs 

size the number of elements in the array (1 - 192) 

void  
Set_InvokeDirectiveDiagnostic(FSP_InvokeDirectiveDiagnostic diag); 

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the 
diagnostic code passed by the argument. 

Initial Values of Operation Parameters after Creation 

Parameter Created directly Created by Service Instance 

directive identification 0 0 

directive ‘invalid’ ‘invalid’ 

V(R) 0 0 

V(S) 0 0 

FOP sliding window width 0 0 

T1 initial 0 0 

transmission-limit 0 0 

timeout-type ‘invalid’ ‘invalid’ 

map-multiplexing-control 
(priority list) 

NULL NULL 

map-multiplexing-control 
(polling vector) 

NULL NULL 

INVOKE DIRECTIVE 
diagnostic 

‘invalid’ ‘invalid’ 

CCSDS 916.3-M-1 Page A-58 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Checking of Invocation Parameters 
The interface ensures consistency between the directive and the directive parameters, as the 
client cannot set the directive directly.  The consistency checks defined below only need to 
be performed when the invocation is received by the service provider.  The method 
VerifyInvocationArguments() should nevertheless be called on the user side to 
check the permissible range of parameter arguments. 

Parameter Required condition 

directive Must not be ‘invalid’ 

V(R) If the directive is ‘initiate AD with set V(R)’ must be a value in the 
range 0 to 255. 

V(S) If the directive is ‘set V(S)’ must be a value in the range 0 to 255. 

FOP sliding window width If the directive is ‘set FOP sliding window width’ must be a value in the 
range 1 to 255 

T1 initial If the directive is ‘set T1 initial’ must not be zero. 

transmission-limit If the directive is ‘set transmission limit’ must not be zero 

timeout-type If the directive is ‘set timeout type’ must not be ‘invalid’ 

map-multiplexing-control 
(priority list) 

If the directive is ‘modify map multiplexing control’ must one of the 
following 

an array of 1 to 64 MAP ID / Priority pairs where each MAP ID must be 
in the range 0 to 63 and each priority in the range 1 to 64; 

NULL (multiplexing scheme is ‘FIFO’ or ‘polling vector’) 

map-multiplexing-control 
(polling vector) 

If the directive is ‘modify map multiplexing control’ must be one of the 
following 

an array of 1 to 192 MAP Ids where each MAP ID must be in the range 
0 to 63; 

NULL (multiplexing scheme is ‘FIFO’ or ‘absolute priority’). 

Checking of Return Parameters 

Parameter Required condition 

invoke directive diagnostic must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is 
‘specific’ 

expected directive id If result is ‘positive’, must be directive id + 1 

CCSDS 916.3-M-1 Page A-59 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A4 FSP SERVICE INSTANCE INTERFACES 

A4.1 SERVICE INSTANCE CONFIGURATION 

Name IFSP_SIAdmin 
GUID {91DCEBA6-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown 
File IFSP_SIAdmin.H 

The interface provides write and read access to the FSP-specific service instance 
configuration parameters.  All configuration parameters must be set as part of service 
instance configuration.  When the method ConfigCompleted() is called on the 
interface ISLE_SIAdmin, the service element checks that all parameters have been set and 
returns an error when the configuration is not complete. 

FSP-specific configuration parameters are not processed or modified by the API.  They are 
only used for the following purposes: 

– to inform the service user via the GET-PARAMETER operation; 

– to initialize parameters of the status report;  or 

– to check operation parameters. 

FSP configuration parameters can be modified at any time.  The API always uses the last 
value set in GET-PARAMETER returns.  Parameters used for initialization of the status 
report must not be set after invocation of ConfigCompleted().  The effect of invoking 
these methods at a later stage is undefined. 

As a convenience for the application, the interface provides read access to the configuration 
parameters, except for parameters used to initialize the status report.  If retrieval methods are 
called before configuration, the value returned is undefined. 

It is noted that service management might constrain the range of parameters that can be 
modified after configuration.  The API does not enforce these constraints. 

In addition to the FSP configuration parameters accessible via this interface, the FOP 
parameters controlled via the interface IFSP_FOPMonitor must be initialized before 
calling ConfigCompleted(). 

CCSDS 916.3-M-1 Page A-60 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Synopsis 
#include <FSP_Types.h> 
#include <SLE_SCM.H> 
 
#define IID_IFSP_SIAdmin_DEF { 0x91dceba6, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_SIAdmin : IUnknown 
{ 
  virtual void 
    Set_MaximumFrameLength( unsigned int length ) = 0; 
  virtual void 
    Set_MaximumPacketLength( unsigned int length ) = 0; 
  virtual void 
    Set_VcMuxScheme( FSP_MuxScheme scheme ) = 0; 
  virtual void 
    Set_VcPriorityList( const FSP_AbsolutePriority* priorities, 
                        int size ) = 0; 
  virtual void 
    Set_VcPollingVector( const FSP_VcId* pvec, int size ) = 0; 
  virtual void 
    Set_BlockingTimeout( unsigned long timeout ) = 0; 
  virtual void 
    Set_BlockingUsage( FSP_BlockingUsage usage ) = 0; 
  virtual void 
    Set_DirectiveInvocationEnabled( SLE_YesNo yesNo ) = 0; 
  virtual void 
    Set_SegmentHeaderPresent( SLE_YesNo yesNo ) = 0; 
  virtual void 
    Set_ApIdList( const FSP_ApId* plist, int size ) = 0; 
  virtual void 
    Set_MapList( const FSP_MapId* plist, int size ) = 0; 
  virtual void 
    Set_VirtualChannel( FSP_VcId id ) = 0; 
  virtual void 
    Set_PermittedTransmissionMode( FSP_PermittedTransmissionMode mode)= 0; 
  virtual void 
    Set_MaximumBufferSize( FSP_BufferSize size ) = 0; 
  virtual void 
    Set_InitialProductionStatus( FSP_ProductionStatus status ) = 0; 
  virtual void 
    Set_InitialDirectiveInvocationOnline( SLE_YesNo yesNo ) = 0; 
  virtual unsigned int 
    Get_MaximumFrameLength() const = 0; 
  virtual unsigned int 
    Get_MaximumPacketLength() const = 0; 
  virtual FSP_MuxScheme 
    Get_VcMuxScheme() const = 0; 
  virtual const FSP_AbsolutePriority* 
    Get_VcPriorityList( int& size ) const = 0; 
  virtual const FSP_VcId* 
    Get_VcPollingVector( int& size ) const = 0; 
  virtual unsigned long 
    Get_BlockingTimeout() const = 0; 
  virtual FSP_BlockingUsage 
    Get_BlockingUsage() const = 0; 
  virtual SLE_YesNo 
    Get_DirectiveInvocationEnabled() const = 0; 

CCSDS 916.3-M-1 Page A-61 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

  virtual SLE_YesNo 
    Get_SegmentHeaderPresent() const = 0; 
  virtual const FSP_ApId* 
    Get_ApIdList( int& size ) const = 0; 
  virtual const FSP_MapId* 
    Get_MapList( int& size ) const = 0; 
  virtual FSP_VcId 
    Get_VirtualChannel() const = 0; 
  virtual FSP_PermittedTransmissionMode 
    Get_PermittedTransmissionMode() const = 0; 
  virtual FSP_BufferSize 
    Get_MaximumBufferSize() const = 0; 
}; 

Methods 

void Set_MaximumFrameLength( unsigned int length ); 

Sets the mission maximum TC transfer frame length in octets. 

Arguments 

length a number in the range 12 to 1026 octets 

void Set_MaximumPacketLength( unsigned int length ); 

Sets the mission maximum telecommand packet length in octets. 

Arguments 

length a number in the range 7 to 65542 octets 

void Set_VcMuxScheme( FSP_MuxScheme scheme ); 

Sets the VC multiplexing scheme in effect: (‘FIFO’, ‘absolute priority’, ‘polling vector’). 

void  
Set_VcPriorityList( const FSP_AbsolutePriority* priorities, 
                    int size ); 

Sets the priority list for the VC multiplexing scheme ‘absolute priority’.  Must not be set if 
the VC multiplexing scheme is ‘FIFO’ or ‘polling vector’. 

Arguments 

priorities an array of VC ID priority pairs as defined by the type 
FSP_AbsolutePriority 

size the number of elements in the list 

CCSDS 916.3-M-1 Page A-62 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_VcPollingVector( const FSP_VcId* pvec, int size ); 

Sets the polling vector for the VC multiplexing scheme ‘polling vector’.  Must not be set if 
the VC multiplexing scheme is ‘FIFO’ or ‘absolute priority’. 

Arguments 

pvec an array of VC IDs in the sequence the VCs are polled 

size the number of elements in the vector 

void Set_BlockingTimeout( unsigned long timeout ); 

Sets the period from inserting the first packet into the TC frame data unit until this unit is 
passed to the FOP regardless of the number of packets contained.  Shall not be set when 
blocking usage is set to ‘permitted’. 

Arguments 

timeout timeout period in microseconds 

void Set_BlockingUsage( FSP_BlockingUsage usage ); 

Defines whether packet blocking is permitted on the VC. 

void Set_DirectiveInvocationEnabled( SLE_YesNo yesNo ); 

Defines whether the service instance being configured is allowed to invoke directives.  The 
argument shall be set to ‘yes’ if this service instance is authorized to invoke the FSP-
INVOKE-DIRECTIVE operation, and to ‘no’ otherwise. 

void Set_SegmentHeaderPresent( SLE_YesNo yesNo ); 

Specifies whether a segment header is present (‘yes’) or absent (‘no’) in the TC transfer 
frames. 

void Set_ApIdList( const FSP_ApId* plist, int size ); 

Specifies the list of APIDs the given service instance is authorized to access. 

Arguments 

plist array of APIDs, each APID is in the range 0 to 2047 

size number of APIDs in the array (1 to 2048) 

CCSDS 916.3-M-1 Page A-63 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_MapList( const FSP_MapId* plist, int size ); 

Specifies the list of MAPs permitted to be used by the given service instance if MAPs are 
used.  Must not be set when MAPs are not used. 

void Set_VirtualChannel( FSP_VcId id ); 

Specifies the virtual channel used by this service instance. 

void  
Set_PermittedTransmissionMode( FSP_PermittedTransmissionMode mode ); 

Specifies the transmission mode permitted to be used by the given service instance. 

void Set_MaximumBufferSize( FSP_BufferSize size ); 

Specifies the maximum packet buffer size in units of octets.  This value is used to initialize 
the status parameter packet buffer available. 

Precondition: ISLE_SIAdmin::ConfigCompleted() was not called yet. 

void Set_InitialProductionStatus( FSP_ProductionStatus status ); 

Sets the production status at the time of service instance configuration.  The value is used to 
initialize the status parameter production status.  The current value of the production status 
can be retrieved via the interface IFSP_SIUpdate. 

Precondition: ISLE_SIAdmin::ConfigCompleted() was not called yet. 

void Set_InitialDirectiveInvocationOnline( SLE_YesNo yesNo ); 

Specifies whether a service instance with directive invocation capability is connected at the 
time of configuration.  This method only needs to be called when directive invocation is not 
enabled for the service instance.  If directive invocation is enabled, the method invocation is 
ignored.  The current value of the parameter can be retrieved via the interface 
IFSP_SIUpdate. 

Precondition: ISLE_SIAdmin::ConfigCompleted() was not called yet. 

unsigned int Get_MaximumFrameLength() const; 

Returns the mission maximum TC transfer frame length in octets. 

unsigned int Get_MaximumPacketLength() const; 

Returns the maximum packet length. 

CCSDS 916.3-M-1 Page A-64 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP_MuxScheme Get_VcMuxScheme() const; 

Returns the VC multiplexing scheme in effect. 

const FSP_AbsolutePriority* Get_VcPriorityList( int& size ) const; 

Returns the priority list as a vector of VC ID/priority pairs if the VC multiplexing scheme is 
‘absolute priority’.  If the multiplexing scheme is ‘FIFO’ or ‘polling vector’, returns NULL. 

const FSP_VcId* Get_VcPollingVector( int& size ) const; 

Returns the polling vector as an array of VCIDs if the VC multiplexing scheme is ‘polling 
vector’.  If the multiplexing scheme is ‘FIFO’ or ‘absolute priority’, returns NULL. 

unsigned long Get_BlockingTimeout() const; 

Returns the blocking timeout period. 

Precondition: Get_BlockingUsage() returns ‘permitted’. 

FSP_BlockingUsage Get_BlockingUsage() const; 

Returns whether blocking of packets is permitted. 

SLE_YesNo Get_DirectiveInvocationEnabled() const; 

Returns ‘yes’ if the service instance is allowed to invoke the FSP-INVOKE-DIRECTIVE 
operation and ‘no’ otherwise. 

SLE_YesNo Get_SegmentHeaderPresent() const; 

Returns ‘yes’ if a segment header is present in the TC transfer frames, and ‘no’ otherwise. 

const FSP_ApId* Get_ApIdList( int& size ) const; 

Returns the list of APIDs the service instance is authorized to access. 

const FSP_MapId* Get_MapList( int& size ) const; 

Returns the list of MAPs the service instance is authorized to access. 

FSP_VcId Get_VirtualChannel() const; 

Returns the virtual channel used by the service instance. 

CCSDS 916.3-M-1 Page A-65 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP_PermittedTransmissionMode Get_PermittedTransmissionMode() const; 

Returns the transmission mode the service instance is authorized to use. 

FSP_BufferSize Get_MaximumBufferSize() const; 

Returns the maximum packet buffer size. 

CCSDS 916.3-M-1 Page A-66 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A4.2 FOP MONITORING AND CONTROL 

Name IFSP_FOPMonitor 
GUID {D9E3A601-641A-11d5-9CF0-0004761E8CFB} 
Inheritance: IUnknown 
File IFSP_FOPMonitor.H 

The interface provides access to the FSP parameters related to the FOP machine of the VC 
on which the service instance operates including 

– parameters controlling operation the FOP machine; and 

– parameters monitoring the FOP state and variables. 

The API service instance uses these parameters only to respond to GET-PARAMETER 
invocations.  All parameters must be set when the service instance is being configured before 
the method ConfigCompleted() is called on the interface ISLE_SIAdmin.  The 
service instance verifies completeness and consistency of the parameters within the method 
ConfigCompleted(). 

During the lifetime of the service instance, FOP related parameters must be updated 
whenever they change.  Changes might occur because of directives invoked by a service user 
on the same or on a different service instance, because of events detected by the FOP 
machine, or because of management action.  In order to ensure that the service instance 
always reports the correct parameter value, updates must be reported independent of the 
service instance state. 

The parameters ‘map-multiplexing-scheme’ and ‘map-multiplexing-control’ are included in 
this interface because ‘map-multiplexing-control’ can be modified by the service user via a 
directive. 

Synopsis 
#include <FSP_Types.h> 
#include <SLE_SCM.H> 
 
#define IID_IFSP_FOP_DEF {0xd9e3a601, 0x641a, 0x11d5, \ 
           { 0x9c, 0xf0, 0x0, 0x4, 0x76, 0x1e, 0x8c, 0xfb} } 
 
interface IFSP_FOPMonitor : IUnknown 
{ 
  virtual void 
    Set_FopSlidingWindow( unsigned long window ) = 0; 
  virtual void 
    Set_TimeoutType( FSP_TimeoutType type ) = 0; 
  virtual void 
    Set_TimerInitial( unsigned long timeout ) = 0; 
  virtual void 
    Set_TransmissionLimit( unsigned long limit ) = 0; 
  virtual void 
    Set_TransmitterFrameSequenceNumber( unsigned long number ) = 0; 

CCSDS 916.3-M-1 Page A-67 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

  virtual void 
    Set_FopState( FSP_FopState state ) = 0; 
  virtual void 
    Set_MapPriorityList( const FSP_AbsolutePriority* priorities, 
                         int size ) = 0; 
  virtual void 
    Set_MapPollingVector( const FSP_MapId* pvec, int size ) = 0; 
  virtual void 
    Set_MapMuxScheme( FSP_MuxScheme scheme ) = 0; 
  virtual unsigned long 
    Get_FopSlidingWindow() const = 0; 
  virtual FSP_TimeoutType 
    Get_TimeoutType() const = 0; 
  virtual unsigned long 
    Get_TimerInitial() const = 0; 
  virtual unsigned long 
    Get_TransmissionLimit() const = 0; 
  virtual unsigned long 
    Get_TransmitterFrameSequenceNumber() const = 0; 
  virtual FSP_FopState 
    Get_FopState() const = 0; 
  virtual const FSP_AbsolutePriority* 
    Get_MapPriorityList( int& size ) const = 0; 
  virtual const FSP_MapId* 
    Get_MapPollingVector( int& size ) const = 0; 
  virtual FSP_MuxScheme 
    Get_MapMuxScheme() const = 0; 
}; 

Methods 

void Set_FopSlidingWindow( unsigned long window ); 

Sets the FOP sliding window width, i.e.,  the number of frames that can be transmitted on the 
given VC before an acknowledgement is required. 

Arguments 

window a number in the range 1 to 255 

void Set_TimeoutType( FSP_TimeoutType type ); 

Specifies the FOP behavior in case of a timeout (‘Alert’ or ‘AD service suspension’). 

void Set_TimerInitial( unsigned long timeout ); 

Specifies the initial value for countdown timer when an AD or BC frame is transmitted. 

Arguments 

timeout timer value in microseconds 

CCSDS 916.3-M-1 Page A-68 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_TransmissionLimit( unsigned long limit ); 

Specifies the maximum number of times the first frame on the Sent Queue may be 
transmitted. 

void Set_TransmitterFrameSequenceNumber( unsigned long number ); 

Sets the current value of the FOP Transmitter Frame Sequence Number, V(S), which 
contains the value of the Frame Sequence Number, N(S), to be put in the Transfer Frame 
Header of the next Type AD frame to be transmitted.  The parameter shall be updated, 
whenever the transmission mode capability changes (i.e.,  when the sequence controlled 
service is suspended, terminated, or started). 

Arguments 

number V(S) value in the range 0 to 255 

void Set_FopState( FSP_FopState state ); 

Sets the current value of the FOP state.  The parameter shall be updated for every changed of 
the FOP state. 

void  
Set_MapPriorityList( const FSP_AbsolutePriority* priorities,  
                     int size ); 

Sets the priority list for the MAP multiplexing scheme ‘absolute priority’.  Must not be set if 
the MAP multiplexing scheme is ‘FIFO’ or ‘polling vector’. 

Arguments 

priorities an array of MAP ID priority pairs as defined by the type 
FSP_AbsolutePriority 

size the number of elements in the list 

void Set_MapPollingVector( const FSP_MapId* pvec, int size ); 

Sets the polling vector for the MAP multiplexing scheme ‘polling vector’.  Must not be set if 
the MAP multiplexing scheme is ‘FIFO’ or ‘absolute priority’. 

Arguments 

pvec an array of MAP IDs in the sequence the MAPs are polled 

size the number of elements in the vector 

CCSDS 916.3-M-1 Page A-69 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

void Set_MapMuxScheme( FSP_MuxScheme scheme ); 

Sets the MAP multiplexing scheme in effect: (‘FIFO’, ‘absolute priority’, ‘polling vector’). 

unsigned long Get_FopSlidingWindow() const; 

Returns the FOP sliding window width. 

FSP_TimeoutType Get_TimeoutType() const; 

Returns the current setting of the timeout type (‘Alert’ or ‘AD service suspension’). 

unsigned long Get_TimerInitial() const; 

Returns the initial value of the FOP countdown timer in microseconds. 

unsigned long Get_TransmissionLimit() const; 

Returns the FOP (re-)transmission limit. 

unsigned long Get_TransmitterFrameSequenceNumber() const; 

Returns the current value of the FOP variable V(S)—this value is only updated when the 
transmission mode capability changes. 

FSP_FopState Get_FopState() const; 

Returns the current value of the FOP state. 

const FSP_AbsolutePriority* Get_MapPriorityList( int& size ) const; 

Returns the priority list as a vector of MAP ID/priority pairs if the MAP multiplexing 
scheme is ‘absolute priority’.  If the multiplexing scheme is ‘FIFO’ or ‘polling vector’, 
returns NULL. 

const FSP_MapId* Get_MapPollingVector( int& size ) const; 

Returns the polling vector as an array of MAP IDs if the MAP multiplexing scheme is 
‘polling vector’.  If the multiplexing scheme is ‘FIFO’ or ‘absolute priority’, returns NULL. 

FSP_MuxScheme Get_MapMuxScheme() const; 

Returns the MAP multiplexing scheme in effect. 

CCSDS 916.3-M-1 Page A-70 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

A4.3 UPDATE OF SERVICE INSTANCE PARAMETERS 

Name IFSP_SIUpdate 
GUID {91DCEBA7-E896-11d4-9F17-00104B4F22C0} 
Inheritance: IUnknown 
File IFSP_SIUpdate.H 

The interface provides methods to update parameters that shall be reported to the service user 
via the operations FSP-STATUS-REPORT, FSP-ASYNC-NOTIFY, and FSP-GET-
PARAMETER.  In order to keep this information up to date the appropriate methods of this 
interface must be called whenever certain events occur (see the specification in 3.1).  If these 
events must be reported to the FSP service user via a notification, the API can be requested 
to send the notification.  Alternatively the application can generate and send the notification 
itself. 

The methods of this interface must always be called when one of the relevant events occurs, 
independent of the state of the service instance.  Notifications to the user will only be sent, if 
the service instance state is either ‘ready’ or ‘active’.  Failure to inform the API of an event 
can result in incorrect and inconsistent parameters in the status report. 

Because of performance considerations, methods processing nominal events perform no 
plausibility checks, but completely rely on the application to provide correct and consistent 
arguments. 

The interface provides read access to the parameters set via this interface and to parameters 
accumulated or derived by the API according to the specifications in 3.1.4.  The API sets the 
parameters to the initial values specified at the end of this annex when the service instance is 
configured.  Parameter values retrieved before configuration are undefined. 

Synopsis 
#include <FSP_Types.h> 
#include <SLE_SCM.H> 
interface ISLE_Time; 
 
#define IID_IFSP_SIUpdate_DEF { 0x91dceba7, 0xe896, 0x11d4, \ 
          { 0x9f, 0x17, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } } 
 
interface IFSP_SIUpdate : IUnknown 
{ 
  virtual void 
    PacketStarted( FSP_PacketId packetId, 
                   FSP_TransmissionMode mode, 
                   const ISLE_Time& startTime, 
                   FSP_BufferSize bufferAvailable 
                   bool notify ) = 0; 
  virtual void 
    PacketRadiated( FSP_PacketId packetId, 
                    FSP_TransmissionMode mode, 
                    const ISLE_Time& radiationTime, 

CCSDS 916.3-M-1 Page A-71 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

                    bool notify ) = 0; 
  virtual void 
    PacketAcknowledged( FSP_PacketId packetId, 
                        const ISLE_Time& ackTime, 
                        bool notify ) = 0; 
  virtual void 
    BufferEmpty( bool notify ) = 0; 
  virtual HRESULT 
    PacketNotStarted( FSP_PacketId packetId, 
                      FSP_TransmissionMode mode, 
                      const ISLE_Time& startTime, 
                      FSP_Failure reason, 
                      const FSP_PacketId* affectedPackets, 
                      int numAffected, 
                      FSP_BufferSize bufferAvailable, 
                      bool notify ) = 0; 
  virtual HRESULT 
    ProductionStatusChange( FSP_ProductionStatus newStatus, 
                            const FSP_PacketId* affectedPackets, 
                            int numAffected, 
                            FSP_FopAlert fopAlert, 
                            FSP_BufferSize bufferAvailable, 
                            bool notify ) = 0; 
  virtual HRESULT 
    VCAborted( const FSP_PacketId* affectedPackets, 
               int numAffected, 
               FSP_BufferSize bufferAvailable, 
               bool notify ) = 0; 
  virtual HRESULT 
    NoDirectiveCapability( bool notify ) = 0; 
  virtual HRESULT 
    DirectiveCapabilityOnline( bool notify ) = 0; 
  virtual HRESULT 
    DirectiveCompleted( FSP_DirectiveId directiveId, 
                        SLE_Result result, 
                        FSP_FopAlert fopAlert, 
                        bool notify ) = 0; 
  virtual HRESULT 
    EventProcCompleted( FSP_EventInvocationId eventId, 
                        FSP_EventResult result, 
                        bool notify ) = 0; 
  virtual FSP_ProductionStatus 
    Get_ProductionStatus() const = 0; 
  virtual SLE_YesNo 
    Get_DirectiveInvocationOnline() const = 0; 
  virtual FSP_BufferSize 
    Get_PacketBufferAvailable() const = 0; 
  virtual unsigned long 
    Get_NumberOfADPacketsReceived() const = 0; 
  virtual unsigned long 
    Get_NumberOfBDPacketsReceived() const = 0; 
  virtual unsigned long 
    Get_NumberOfADPacketsProcessed() const = 0; 
  virtual unsigned long 
    Get_NumberOfBDPacketsProcessed() const = 0; 
  virtual unsigned long 
    Get_NumberOfADPacketsRadiated() const = 0; 
  virtual unsigned long 
    Get_NumberOfBDPacketsRadiated() const = 0; 
  virtual unsigned long 

CCSDS 916.3-M-1 Page A-72 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

    Get_NumberOfPacketsAcknowledged() const = 0; 
  virtual FSP_PacketId 
    Get_PacketLastProcessed() const = 0; 
  virtual const ISLE_Time* 
    Get_ProductionStartTime() const = 0; 
  virtual FSP_PacketStatus 
    Get_PacketStatus() const = 0; 
  virtual FSP_PacketId 
    Get_PacketLastOk() const = 0; 
  virtual const ISLE_Time* 
    Get_ProductionStopTime() const = 0; 
  virtual FSP_PacketId 
    Get_ExpectedPacketId() const = 0; 
  virtual FSP_DirectiveId 
    Get_ExpectedDirectiveInvocationId() const = 0; 
  virtual FSP_EventInvocationId 
    Get_ExpectedEventInvocationId() const = 0; 
}; 

Methods 

void 
PacketStarted( FSP_PacketId packetId, 
               FSP_TransmissionMode mode, 
               const ISLE_Time& startTime, 
               FSP_BufferSize bufferAvailable 
               bool notify ); 

The method shall be called when processing of a packet has been started, i.e.,  the packet has 
been extracted from the packets queue and forwarded to the segments queue.  It performs the 
following actions: 

a) if the value of mode is ‘sequence controlled’, increments the number of AD packets 
processed otherwise increments the number of BD packets processed; 

b) stores the value of the argument packetId to the parameter packet-
identification-last-processed; 

c) copies the startTime to the parameter production-start-time; 

d) sets the parameter packet-status to ‘production started’; 

e) sets the parameter packet-buffer-available to the value passed by the 
argument bufferAvailable; 

f) if the argument notify is true: 

1) creates an empty packet identification list and inserts the argument packetId 
into that parameter; 

2) sends the notification ‘packet processing started’ to the service user provided 
sending of notifications is allowed according to the state tables in reference [5]. 

CCSDS 916.3-M-1 Page A-73 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Preconditions 

The client must ensure the following preconditions since they are not checked by the 
implementation: 

a) the production status must be ‘operational’; 

b) if the transmission mode is ‘sequence controlled’ the production status must be 
‘operational AD and BD’; 

c) the argument notify must only be set to TRUE if the service user has requested a 
‘processing started’ notification for the packet. 

Arguments 

packetId the identification of the packet for which processing started 

mode the transmission mode (‘sequence controlled’ or ‘expedited’) of the 
packet 

startTime the time at which processing of the packet started 

bufferAvailable the amount of packet buffer currently available 

notify if true a notification shall be sent to the service user 

void 
PacketRadiated( FSP_PacketId packetId, 
                FSP_TransmissionMode mode, 
                const ISLE_Time& radiationTime, 
                bool notify ); 

The method shall be called when a packet has been completely radiated.  If segmentation is 
used, this implies that the last segment of the packet was radiated.  The method performs the 
following actions: 

a) if the value of mode is ‘sequence controlled’, increments the number of AD packets 
radiated otherwise increments the number of BD packets radiated; 

b) if the value of mode is ‘expedited’, sets the parameter packet identification last OK to 
the value of the argument packetId and copies the raditationTime to the 
parameter production-stop-time; 

c) if the argument packetId equals the parameter packet-identification-
last-processed, sets the parameter packet status to ‘packet radiated’; 

d) if the argument notify is true: 

1) creates an empty packet identification list and inserts the argument packetId 
into that parameter; 

CCSDS 916.3-M-1 Page A-74 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2) sends the notification ‘packet radiated’ to the service user provided sending of 
notifications is allowed according to the state tables in reference [5]. 

Preconditions 

The client must ensure the following preconditions since they are not checked by the 
implementation: 

a) the production status must be ‘operational’; 

b) if the transmission mode is ‘sequence controlled’ the production status must be 
‘operational AD and BD’; 

c) the argument notify must only be set to TRUE if the service user has requested a 
‘radiated’ notification for the packet. 

Arguments 

packetId the identification of the packet that was radiated 

mode the transmission mode (‘sequence controlled’ or ‘expedited’) of the 
packet 

radiationTime the time at which radiation completed 

notify if true a notification shall be sent to the service user 

void 
PacketAcknowledged( FSP_PacketId packetId, 
                    const ISLE_Time& ackTime, 
                    bool notify ); 

The method shall be called when all components of a packet were acknowledged by the 
space element via the associated stream of CLCWs.  It performs the following actions: 

a) increments the parameter number of packets acknowledged; 

b) sets the parameter packet identification last OK to the value of the argument 
packetId; 

c) copies ackTime to the parameter ‘production stop time’; 

d) if the argument packetId equals the parameter packet identification last processed, 
sets the parameter packet status to ‘packet acknowledged’; 

e) if the argument notify is true: 

1) creates an empty packet identification list and inserts the argument packetId 
into that parameter; 

CCSDS 916.3-M-1 Page A-75 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

2) sends the notification ‘packet acknowledged’ to the service user provided sending 
of notifications is allowed according to the state tables in reference [5]. 

Preconditions 

The argument notify must only be set to TRUE if the service user has requested an 
‘acknowledged’ notification for the packet. 

Arguments 

packetId the identification of the packet that was acknowledged 

ackTime the time at which the last component of the packet was acknowledged 

notify if true a notification shall be sent to the service user 

void BufferEmpty( bool notify ); 

The method shall be called when the packet buffer becomes empty because all packets were 
processed.  It shall not be called when the packet buffer is cleared because of one of the 
events for which reference [3] requires discarding of buffered packets. 

The method performs the following actions: 

a) sets the parameter packet buffer available to the maximum buffer size set by 
configuration of the service instance; 

b) if the argument notify is true, sends the notification ‘buffer empty’ to the service user 
provided sending of notifications is allowed according to the state tables in reference [5]. 

Arguments 

notify if true a notification shall be sent to the service user 

HRESULT 
PacketNotStarted( FSP_PacketId packetId, 
                  FSP_TransmissionMode mode, 
                  const ISLE_Time& startTime, 
                  FSP_Failure reason, 
                  const FSP_PacketId* affectedPackets, 
                  int numAffected, 
                  FSP_BufferSize bufferAvailable, 
                  bool notify ); 

The method shall be called when processing of a packet could not be started because: 

– the latest production start time was expired; 

– the production status was ‘interrupted’; or 

CCSDS 916.3-M-1 Page A-76 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

– the required transmission mode was not available. 

It performs the following actions: 

a) if the value of mode is ‘sequence controlled’, increments the number of AD packets 
processed otherwise increments the number of BD packets processed; 

b) sets the parameter packet identification last processed to the value of the argument 
packetId; 

c) copies the startTime to the parameter production start time; 

d) sets the parameter packet status to ‘expired’, ‘interrupted’, or ‘unsupported 
transmission mode’ according to the value of the argument reason; 

e) sets the parameter packet buffer available to the value passed by the argument 
bufferAvailable; 

f) if the argument notify is true and sending of notifications is allowed according to 
the state tables in reference [5]: 

1) creates an empty packet identification list and inserts the argument packetId 
and all identifiers in the argument affectedPackets into that parameter; 

2) if reason is ‘expired’, sends the notification ‘sldu expired’ to the service user; 

3) if reason is ‘interrupted’, sends the notification ‘production interrupted’ to the 
service user; 

4) if reason is ‘transmission mode mismatch’, sends the notification ‘transmission 
mode mismatch’ to the service user. 

Arguments 

packetId the identification of the packet for which processing could not be 
started 

mode the transmission mode (‘sequence controlled’ or ‘expedited’) of the 
packet 

startTime the time at which processing of the packet was attempted 

reason the reason why processing could not be started 

affectedPackets an array containing the identifiers of all packets (excluding the 
identifier passed by packetId) that were or will be discarded 
because of the problem detected.  If packetId is the only affected 
packet, a NULL pointer shall be supplied and the argument 
numAffected shall be set to zero. 

numAffected the number of packet identifiers in the array affectedPackets 

CCSDS 916.3-M-1 Page A-77 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

bufferAvailable the amount of packet buffer currently available 

notify if true a notification shall be sent to the service user 

Result codes 

S_OK the updates have been made and the notification was sent if 
requested 

SLE_E_INCONSISTENT the arguments supplied are inconsistent (see NOTE)—updates 
have not been performed and a notification has not been sent 

SLE_E_STATE the service instance state is ‘unbound’ (it might have 
aborted)—updates have been performed but the requested 
notification could not be sent 

NOTE – The result code SLE_E_INCONSISTENT indicates one of the following 
problems: 

a) reason is ‘interrupted’ but the production status is not ‘interrupted’ or ‘halted’; or 

b) reason is ‘transmission mode mismatch’ but mode is ‘expedited’. 

HRESULT 
ProductionStatusChange( FSP_ProductionStatus newStatus, 
                        const FSP_PacketId* affectedPackets, 
                        int numAffected, 
                        FSP_FopAlert fopAlert, 
                        FSP_BufferSize bufferAvailable, 
                        bool notify ); 

The method shall be called whenever the production status changes, including changes of the 
operational sub-states.  It performs the following actions: 

a) sets the parameter production status to newStatus; 

b) if the argument affectedPackets is not NULL and contains the identifier stored 
in the parameter packet identification last processed, sets the parameter packet status 
to 

– ‘interrupted’ if the new production status is ‘halted’ or ‘interrupted’, or 

– ‘unsupported transmission mode’ if the new production status is ‘operational’; 

c) sets the parameter packet buffer available to the value passed by the argument 
bufferAvailable; 

d) if the argument notify is true and sending of notifications is allowed according to the 
state tables in reference [5]: 

CCSDS 916.3-M-1 Page A-78 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

1) if the argument affectedPackets is not NULL and not empty, creates an 
empty packet identification list and copies all identifiers in the argument 
affectedPackets to that parameter; 

2) if the production status changed to ‘halted’ sends the notification ‘production 
halted’ to the service user; 

3) if the production status changed to ‘interrupted’ and the argument 
affectedPackets is not NULL and not empty, sends the notification 
‘production interrupted’ to the service user; 

4) if the production status changed from ‘operational AD and BD’ to ‘interrupted’ 
and the argument affectedPackets is NULL or empty, sends the notification 
‘transmission mode capability change’ to the service user; 

5) if the new production status is operational and a different production status value 
was previously reported to the user or no status was reported at all, sends the 
notification ‘production operational’ to the service user; 

6) if the new production status is ‘operational BD’ or ‘operational AD suspended’ 
and the previous value of the production status was ‘operational AD and BD’ or if 
the new production status is ‘operational AD and BD’ and the previous value of 
the production status was ‘operational BD’ or ‘operational AD suspended’, sends 
the notification ‘transmission mode capability change’ to the service user; 

7) if the new production status is ‘operational BD’ or ‘operational AD suspended’ 
and the argument affectedPackets is not NULL, sends the notification 
‘packet transmission mode mismatch’ in addition to the notification ‘transmission 
mode capability change’. 

Arguments 

newStatus the new value of the production status 

affectedPackets an array containing the identifiers of all packets that was or will be 
discarded because of the change of the production status.  If no 
packets are affected by the change of the production status, a NULL 
pointer shall be supplied and the argument numAffected shall be 
set to zero. 

numAffected the number of packet identifiers in the array affectedPackets 

fopAlert the FOP Alert that caused the transmission mode capability change, 
if applicable.  If the transmission mode capability did not change, 
the API ignores this argument. 

bufferAvailable the amount of packet buffer currently available 

CCSDS 916.3-M-1 Page A-79 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

notify if true a notification shall be sent to the service user 

Result codes 

S_OK the updates were made and a notification was sent if required 
and requested 

SLE_S_IGNORED the production status has not changed; the request was 
ignored 

SLE_E_INCONSISTENT the arguments supplied are inconsistent (see NOTE)—updates 
have not been performed and a notification has not been sent 

SLE_E_SEQUENCE there is no valid transition between the old and the new 
production status—this is only a warning, updates were made 
and notifications were sent if requested 

SLE_E_STATE the service instance state is ‘unbound’ (it might have 
aborted)—updates have been performed but the requested 
notification could not be sent 

NOTES 

1 If the production status did not change or the value of the new production status is 
‘configured’ no notification is sent. 

2 Valid transitions of the production status are defined in reference [3]. 

3 The result code SLE_E_INCONSISTENT indicates one of the following problems: 

a) The argument affectedPackets is not NULL although: 

– the new production status is either ‘configured’ or ‘operational AD and BD’; 

– the old production status was not ‘operational’; or 

– the production status changed from ‘operational AD suspended’ to 
‘operational BD’. 

b) The new production status is ‘interrupted’ or ‘halted’ and the packet status is 
‘production started’ but the argument affectedPackets is NULL or the 
packet identification last processed in not contained in the list. 

c) The old production status was ‘configured’ or ‘interrupted’ and the new status is 
‘operational’ but the sub-state is not ‘BD’. 

4 If the production status change was caused by the directive ‘abort VC’ the method 
VCAborted() must be called instead of ProductionStatusChange(). 

CCSDS 916.3-M-1 Page A-80 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

HRESULT 
VCAborted( const FSP_PacketId* affectedPackets, 
           int numAffected, 
           FSP_BufferSize bufferAvailable, 
           bool notify ); 

 The method shall be called following successful execution of the directive ‘abort 
VC’.  It performs the following actions: 

a) sets the parameter production status to ‘operational BD’; 

b) if the identifier in the parameter packet identification last processed is included in 
the argument affectedPackets sets the parameter packet status to 
‘interrupted’; 

c) sets the parameter packet buffer available to the value passed by the argument 
bufferAvailable; 

d) if the argument notify is true: 

1) if affectedPackets is not NULL and not empty creates an empty packet 
identification list and copies all identifiers in the argument 
affectedPackets to that parameter; 

2) Sends the notification ‘VC aborted’ to the service user provided sending of 
notifications is allowed according to the state tables in reference [5]. 

 The directive ‘VC aborted’ will generally cause a change of the production status to 
‘operational BD’.  This change is handled by the method VCAborted.  Therefore, the 
method ProductionStatusChange() must not be called ion this case. 

Arguments 

affectedPackets an array containing the identifiers of all packets that were or will be 
discarded.  If no packets are affected by the directive ‘abort VC’, a 
NULL pointer shall be supplied and the argument numAffected 
shall be set to zero. 

numAffected the number of packet identifiers in the array affectedPackets 

bufferAvailable the amount of packet buffer currently available 

notify if true a notification shall be sent to the service user 

CCSDS 916.3-M-1 Page A-81 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

Result codes 

S_OK the updates were made and the notification was sent if 
requested 

SLE_E_INCONSISTENT the packet status is ‘production started’ but the argument 
bufferAvailable is NULL or the packet identification last 
processed is not contained in the list—updates have not been 
performed and a notification has not been sent 

SLE_E_SEQUENCE the value of the production status was not ‘operational’ when 
the method was called—updates have not been performed and 
a notification has not been sent 

SLE_E_STATE the service instance state is ‘unbound’ (it might have 
aborted)—updates have been performed but the requested 
notification could not be sent 

HRESULT NoDirectiveCapability( bool notify ); 

The method is called when the service instance that has the directive invocation capability 
for the VC is unbound following an UNBIND operation, a PEER-ABORT operation, or a 
protocol abort event.  It performs the following actions if directive invocation is not enabled 
for the service instance: 

a) sets the parameter ‘directive invocation online’ to ‘no’; 

b) if the argument notify is true sends the notification ‘no invoke directive capability on 
this VC’ to the service user provided sending of notifications is allowed according to 
the state tables in reference [5]. 

Arguments 

notify if true a notification shall be sent to the service user 

Result codes 

S_OK the notification was sent if requested 

SLE_S_IGNORED directive invocation is enabled for this service instance; the request has 
been ignored 

SLE_E_STATE the service instance state is ‘unbound’ (it might have aborted); the 
requested notification could not be sent 

CCSDS 916.3-M-1 Page A-82 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

HRESULT DirectiveCapabilityOnline( bool notify ); 

The method is called when a service instance that has the directive invocation capability for 
the VC has successfully bound to the service provider.  It performs the following actions if 
directive invocation is not enabled for the service instance: 

a) sets the parameter ‘directive invocation online’ to ‘yes’; 

b) if the argument notify is true sends the notification ‘invoke directive capability on 
this VC established’ to the service user provided sending of notifications is allowed 
according to the state tables in reference [5]. 

Arguments 

notify if true a notification shall be sent to the service user 

Result codes 

S_OK the notification was sent if requested 

SLE_S_IGNORED directive invocation is enabled for this service instance; the request has 
been ignored 

SLE_E_STATE the service instance state is ‘unbound’ (it might have aborted); the 
requested notification could not be sent 

HRESULT 
DirectiveCompleted( FSP_DirectiveId directiveId, 
                    SLE_Result result, 
                    FSP_FopAlert fopAlert, 
                    bool notify ); 

The method should be called when execution of a directive was completed successfully or 
failed.  If the value of the argument result is ‘positive result’ the method generates and 
transmits the notification ‘positive confirm response to directive’.  If the result is ‘negative 
result’, it generates and transmits the notification ‘negative confirm response to directive’. 

Arguments 

directiveId the directive identification as contained in the FSP-INVOKE-DIRECTIVE 
invocation 

result the result of directive execution (‘positive result’ or ‘negative result’) 

fopAlert in case of a negative result, the FOP alert indicating why the directive 
failed; if result is ‘positive result’, the method ignores this argument 

CCSDS 916.3-M-1 Page A-83 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

notify if true a notification shall be sent to the service user; because sending the 
notification is the only action of the method this argument is not really 
needed—it is provided for consistency with other methods in this interface 

Result codes 

S_OK the notification was sent if requested 

SLE_E_STATE the service instance state is ‘unbound’ (it might have aborted); the 
requested notification could not be sent 

HRESULT 
EventProcCompleted( FSP_EventInvocationId eventId, 
                    FSP_EventResult result, 
                    bool notify ); 

The method should be called when processing of an event requested by an accepted FSP-
THROW-EVENT operation completed.  Depending on the value of the argument result, the 
method generates and transmits one of the notifications ‘action list completed’, ‘action list 
not completed’, or ‘event condition evaluated to false’. 

Arguments 

eventId the event invocation identifier as contained in the FSP-THROW-EVENT 
invocation 

result the result of event processing (‘completed’, ‘not completed’, or ‘condition 
false’) 

notify if true a notification shall be sent to the service user; because sending the 
notification is the only action of the method this argument is not really 
needed—it is provided for consistency with other methods in this interface 

Result codes 

S_OK the notification was sent if requested 

SLE_E_STATE the service instance state is ‘unbound’ (it might have aborted); the 
requested notification could not be sent 

FSP_ProductionStatus Get_ProductionStatus() const; 

Returns the current value of the production status maintained by the service instance. 

CCSDS 916.3-M-1 Page A-84 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

SLE_YesNo Get_DirectiveInvocationOnline() const; 

Returns yes when a service instance with directive invocation capability enabled is 
connected and ‘no’ otherwise. 

FSP_BufferSize Get_PacketBufferAvailable() const; 

Returns the current value of the parameter packet buffer available maintained by the service 
instance. 

unsigned long Get_NumberOfADPacketsReceived() const; 

Returns the accumulated number of AD packets received as derived from FSP-TRANSFER-
DATA returns. 

unsigned long Get_NumberOfBDPacketsReceived() const; 

Returns the accumulated number of BD packets received as derived from FSP-TRANSFER-
DATA returns. 

unsigned long Get_NumberOfADPacketsProcessed() const; 

Returns the accumulated number of AD packets processed including those for which 
processing was started but could not be completed and those for which start of processing 
was attempted. 

unsigned long Get_NumberOfBDPacketsProcessed() const; 

Returns the accumulated number of BD packets processed including those for which 
processing was started but could not be completed and those for which start of processing 
was attempted. 

unsigned long Get_NumberOfADPacketsRadiated() const; 

Returns the accumulated number of AD packets that were completely radiated. 

unsigned long Get_NumberOfBDPacketsRadiated() const; 

Returns the accumulated number of BD packets that were radiated. 

unsigned long Get_NumberOfPacketsAcknowledged() const; 

Returns the accumulated number of AD packets, for which processing was completed. 

CCSDS 916.3-M-1 Page A-85 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

FSP_PacketId Get_PacketLastProcessed() const; 

Returns the current value of the parameter packet identification last processed. 

Precondition: either Get_NumberOfADPacketsProcessed() or 
Get_NumberOfBDPacketsProcessed() returns a non-zero number. 

const ISLE_Time* Get_ProductionStartTime() const; 

Returns the time at which processing of the packet identified by the parameter packet 
identification last processed started or was attempted.  If no packets were processed yet, 
returns a NULL pointer. 

FSP_PacketStatus Get_PacketStatus() const; 

Returns the status of the packet identified by the parameter packet identification last 
processed.  If no packets were processed yet, returns ‘invalid’. 

FSP_PacketId Get_PacketLastOk() const; 

Returns the current value of the parameter packet identification last OK. 

Precondition: either Get_NumberOfADPacketsAcknowledged() or 
Get_NumberOfBDPacketsRadiated() returns a non-zero number. 

const ISLE_Time* Get_ProductionStopTime() const; 

Returns the time at which the packet identified by packet identification last OK completed 
processing.  If no packets completed processing yet, returns a NULL pointer. 

FSP_PacketId Get_ExpectedPacketId() const; 

Returns the packet identification expected next as derived from FSP-START and FSP-
TRANSFER-DATA operations. 

FSP_DirectiveId Get_ExpectedDirectiveInvocationId() const; 

Returns the directive invocation identifier expected next as derived from FSP-INVOKE-
DIRECTIVE operations. 

FSP_EventInvocationId Get_ExpectedEventInvocationId() const; 

Returns the event invocation identifier expected next as derived from FSP-THROW-EVENT 
operations. 

CCSDS 916.3-M-1 Page A-86 October 2008 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page A-87 October 2008 

Initial Parameter Values 

Parameter Value  

production status initial production status set via the interface IFSP_SIAdmin 

directive invocation online initial value set via the interface IFSP_SIAdmin 

packet identification last processed 0 

production start time NULL 

packet status ‘invalid’ 

packet identification last OK 0 

production stop time NULL 

packet buffer available maximum packet buffer size set via the interface 
IFSP_SIAdmin 

number of AD packets received 0 

number of BD packets received 0 

number of AD packets processed 0 

number of BD packets processed 0 

number of AD packets radiated 0 

number of BD packets radiated 0 

number of packets acknowledged 0 

expected packet identification 0 

expected directive invocation id 0 

expected event invocation id 0 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page B-1 October 2008 

ANNEX B 
 

ACRONYMS 
 

(Informative) 

This annex expands the acronyms used throughout this Recommended Practice. 

API Application Program Interface 

CCSDS Consultative Committee for Space Data Systems 

CLCW Communications Link Control Word 

FOP Frame Operation Procedure 

FSP Forward Space Packet 

GUID Globally Unique Identifier 

ID Identifier 

IEC International Electrotechnical Commission 

ISO International Organization for Standardization 

MAP Multiplexer Access Point 

OMG Object Management Group 

PDU Protocol Data Unit 

RF Radio Frequency 

SI Service Instance 

SLDU Space Link Data Unit 

SLE Space Link Extension 

UML Unified Modeling Language 

VC Virtual Channel 

V(R) Receiver Frame Sequence Number 

V(S) Transmitter Frame Sequence Number 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT



CCSDS RECOMMENDED PRACTICE: API FOR THE SLE FSP SERVICE 

CCSDS 916.3-M-1 Page C-1 October 2008 

ANNEX C 
 

INFORMATIVE REFERENCES 
 

(Informative) 

[C1] Procedures Manual for the Consultative Committee for Space Data Systems.  CCSDS 
A00.0-Y-9.  Yellow Book.  Issue 9.  Washington, D.C.: CCSDS, November 2003. 

[C2] Cross Support Concept — Part 1:  Space Link Extension Services.  Report Concerning 
Space Data System Standards, CCSDS 910.3-G-3.  Green Book.  Issue 3.  Washington, 
D.C.: CCSDS, March 2006. 

[C3] Space Link Extension—Application Program Interface for Transfer Services—
Summary of Concept and Rationale.  Report Concerning Space Data System Standards, 
CCSDS 914.1-G-1.  Green Book.  Issue 1.  Washington, D.C.: CCSDS, January 2006. 

[C4] Space Link Extension—Internet Protocol for Transfer Services.  Recommendation for 
Space Data System Standards, CCSDS 913.1-B-1.  Blue Book.  Issue 1.  Washington, 
D.C.: CCSDS, September 2008. 

[C5] Space Link Extension—Application Program Interface for Transfer Services—
Application Programmer’s Guide.  Report Concerning Space Data System Standards, 
CCSDS 914.2-G-2.  Green Book.  Issue 2.  Washington, D.C.: CCSDS, October 2008. 

[C6] The COM/DCOM Reference.  COM/DCOM Product Documentation, AX-01.  San 
Francisco: The Open Group,  1999. 
<http://www.opengroup.org/products/publications/catalog/ax01.htm> 

[C7] Unified Modeling Language (UML).  Version 1.5, formal/2003-03-01.  Needham, MA: 
Object Management Group,  March 2003.  
<http://www.omg.org/technology/documents/modeling_spec_catalog.htm> 

 

CCSDS HISTORICAL DOCUMENT

CCSDS HISTORICAL DOCUMENT


	AUTHORITY
	STATEMENT OF INTENT 
	FOREWORD
	DOCUMENT CONTROL
	CONTENTS
	1 INTRODUCTION
	1.1 PURPOSE
	1.2 SCOPE
	1.3 APPLICABILITY
	1.4 RATIONALE
	1.5 DOCUMENT STRUCTURE
	1.6 DEFINITIONS, NOMENCLATURE, AND CONVENTIONS
	1.7 REFERENCES

	2 OVERVIEW
	2.1 INTRODUCTION
	2.2 PACKAGE FSP SERVICE INSTANCES
	2.3 PACKAGE FSP OPERATIONS
	2.4 SECURITY ASPECTS OF THE SLE FORWARD SPACE PACKET (FSP) TRANSFER SERVICE

	3 FSP SPECIFIC SPECIFICATIONS FOR API COMPONENTS
	3.1 API SERVICE ELEMENT
	3.2 SLE OPERATIONS
	3.3 SLE APPLICATION
	3.4 SEQUENCE OF DIAGNOSTIC CODES

	ANNEX A FSP SPECIFIC INTERFACES(Normative)
	ANNEX B ACRONYMS(Informative)
	ANNEX C INFORMATIVE REFERENCES(Informative)



